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Abstract

The formula LD = [eD + ED,b + B] (see Goodwillie [Cyclic homology, derivations, and the free loopspace, Topology 24
(2) (1985) 187–215]) on the normalized Hochschild complex is the standard replacement in noncommutative geometry for the
classical Cartan homotopy formula. Our purpose is to extend this formula to the normalized bivariant Hochschild complex. To cite
this article: A. Banerjee, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Formule homotopique de Cartan et le complexe de Hochschild bivariant. La formule LD = [eD + ED,b + B] (voir Good-
willie [Cyclic homology, derivations, and the free loopspace, Topology 24 (2) (1985) 187–215]) sur le complexe de Hochschild
normalisé joue le rôle, en géométrie non commutative, de la formule homotopique de Cartan en homologie de Rham. Notre but
est détendre cette formule au complexe de Hochschild bivariant normalisée. Pour citer cet article : A. Banerjee, C. R. Acad. Sci.
Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Cyclic homology, introduced by Connes [1,2] and Tsygan [7], acts as a noncommutative analogue of de Rham
cohomology. If A is an algebra over a commutative ring k and D is a k-linear derivation on A, then the derivation
induces maps LD , eD and ED on the normalized Hochschild complex Ch∗(A) of A, satisfying the formula:

LD = [eD + ED,b + B], (1)

where b is the differential on the normalized Hochschild complex and B is the normalized Connes differential (see
[5, §2.1.9]). In noncommutative geometry, (1) plays the role of Cartan homotopy formula. Formula (1) is due to
Goodwillie [3] (see also the paper of Rinehart [6]). The purpose of this Note is to extend this formula to the normalized
bivariant Hochschild complex.

The formulation of bivariant Hochschild cohomology (and bivariant cyclic cohomology) that we use is the one due
to Jones and Kassel [4]. In particular, the bivariant cyclic cohomology due to [4] unifies negative cyclic homology and
cyclic cohomology and also bears formal similarities to Kasparov’s KK-theory.
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Throughout, we shall use the notations and terminology of [5]. Let A denote a unital algebra over a commutative
ground ring k and let D be a k-linear derivation on A. The bivariant Hochschild cohomology group of A will be
denoted by HH ∗(A,A). We set Cn(A) = A⊗n+1, the tensor products being taken over k. For sake of convenience,
we shall often denote the element a0 ⊗ a1 ⊗ · · · ⊗ an of A⊗n+1 by (a0, a1, . . . , an).

Let Ch∗ (A) denote the complex (C∗(A), b), where b is the Hochschild differential (see [5, Chapter 1] for a descrip-
tion of b). Let B denote Connes’ map B :C∗(A) → C∗+1(A) (see [5, Chapter 2] for a description of this map). Setting
A = A/k and Cn(A) = A ⊗ A⊗n gives us a normalized Hochschild complex (Ch∗(A), b) that is quasi-isomorphic to
the Hochschild complex (Ch∗ (A), b). The map B also descends to a map B :C∗(A) → C∗+1(A). We shall denote b

and B simply by b and B respectively. Also, throughout this paper, all commutators [.,.] are understood to be in the
graded sense.

1. Bivariant cyclic cohomology and derivations

We briefly recall the definition of bivariant Hochschild cohomology. For details, see [5, Section 5.1], or the original
paper of Jones and Kassel [4].

Definition 1.1. (See [5, §5.5.1-2].) Consider the graded module Hom(Ch∗(A),Ch∗(A)) which in degree p is defined to
be

Homp
(
Ch∗(A),Ch∗(A)

) :=
∏

n

Hom
(
Cn(A),Cn+p(A)

)
. (2)

Then the differential ∂h on Hom(Ch∗(A),Ch∗(A)) is defined by ∂h(f ) = bf − (−1)|f |f b, f being a homogeneous
element of Hom(Ch∗(A),Ch∗(A)) of degree |f | and b being the Hochschild differential. The homology of this complex
is referred to as the bivariant Hochschild cohomology of A and is denoted by HH ∗(A,A).

There is another operator ∂c on the module Hom(Ch∗(A),Ch∗(A)) defined as ∂c(f ) = (b +B)f − (−1)|f |f (b +B)

for a homogeneous element f of degree |f |. Now, we prove the following lemma:

Lemma 1.2. Let Mp = {Mn
p}n∈Z denote a sequence of maps Mn

p :Cn(A) → Cn+p(A), n � 0 (we do not assume that

the maps Mn
p commute with either B or b). Given f ∈ Hom(Ch∗(A),Ch∗(A)) of homogeneous degree q , define

Mn,h
p (f ) :Cn(A) → Cn+p+q(A), Mn,h

p (f ) := M
q+n
p f − (−1)pqf Mn

p. (3)

The collection of elements M
n,h
p (f ) :Cn(A) → Cn+p+q(A), n � 0 defines a homogeneous element of

Hom(Ch∗(A),Ch∗(A)) of degree q + p. This defines a morphism Mh
p : Hom(Ch∗(A),Ch∗(A)) → Hom(Ch∗(A),Ch∗(A))

of degree p. Then, on the module Hom(Ch∗(A),Ch∗(A)), we have:
[
∂h,M

h
p

]
(f ) = [b,Mp]f + (−1)pq+p+qf [Mp,b],

[
∂c,M

h
p

]
(f ) = [b + B,Mp]f + (−1)pq+p+qf [Mp,b + B]. (4)

Proof. We calculate, for f ∈ Homq(Ch∗(A),Ch∗(A));

∂hM
h
p(f ) = bMh

p(f ) − (−1)p+qMh
p(f )b

= (
bMpf − (−1)pqbf Mp

) − (
(−1)p+qMpf b − (−1)pq+p+qf Mpb

)
,

Mh
p∂h(f ) = Mp∂h(f ) − (−1)p(q−1)∂h(f )Mp

= (
Mpbf − (−1)qMpf b

) − (−1)p(q−1)
(
bf Mp − (−1)qf bMp

)
,

[
∂h,M

h
p

]
(f ) = ∂hM

h
p(f ) − (−1)pMh

p∂h(f ) = [b,Mp]f + (−1)pq+p+qf [Mp,b]. (5)

If f ∈ Homq(Ch∗(A),Ch∗(A)), ∂c(f ) is not a homogeneous element of Hom(Ch∗(A),Ch∗(A)). However, since both
operators b and B are of odd degree, this fact does not interfere with the powers of (−1) appearing in (5). Hence, we
can show that [∂c,M

h
p](f ) = [b + B,Mp]f + (−1)pq+p+qf [Mp,b + B]. �
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Proposition 1.3. (a) Let D be a derivation on A. Extend D to Cn(A) = A⊗n+1, n � 0, by setting LD(a0, a1, . . . , an) =∑n
i=0(a0, . . . ,Dai, . . . , an). Then LD induces a morphism Lh

D :HHn(A,A) → HHn(A,A).
(b) Let u be an element of A and consider the inner derivation D(a) = [u,a]. Then the morphism Lh

D:
HHn(A,A) → HHn(A,A) is zero.

Proof. (a) Clearly, LD descends to an operator of degree 0 on Ch∗(A); so we can take p = 0 in Lemma 1.2 and define
Lh

D(f ) = LDf − f LD for a homogeneous element f . We can check that [b,LD] = 0, from which it follows that
∂hL

h
D − Lh

D∂h = [∂h,L
h
D] = 0 and hence LD induces a morphism Lh

D on bivariant Hochschild cohomology.
(b) Let f ∈ Homq(Ch∗(A),Ch∗(A)) be such that ∂h(f ) = 0. Then bf = (−1)qf b. If we let h(u) :Cn(A) →

Cn+1(A) be the map h(u)(a0, a1, . . . , an) = ∑
0�i�n(−1)i(a0, . . . , ai, u, ai+1, . . . , an), then bh(u) + h(u)b = −LD .

Then, using the notation of Lemma 1.2 and setting bf = (−1)qf b, we have:

−Lh
D(f ) = −LDf + f LD = (

bh(u) + h(u)b
)
f − f

(
bh(u) + h(u)b

) = ∂h

(
h(u)f

) − (−1)q∂h

(
f h(u)

)

and hence Lh
D(Ker ∂h) ⊆ Im(∂h). �

2. Cartan homotopy formulae

In this section, we shall prove the extension of Cartan homotopy formula to the bivariant context. Given a k-
linear derivation D on A, there are the following two additional operators on Ch∗(A); eD :Cn(A) → Cn−1(A) and
ED : Cn(A) → Cn+1(A), which, along with the operator LD , satisfy (1), i.e., the noncommutative analogue of Cartan
homotopy formula:

eD(a0, . . . , an) := (−1)n+1(D(an)a0, a1, . . . , an−1
)
,

ED(a0, . . . , an) :=
∑

1�i�j�n

(−1)in+1(1, ai, ai+1, . . . , aj−1,D(aj ), aj+1, . . . , an, a0, . . . , ai−1
)
. (6)

Then, in the notation of Lemma 1.2, we can use the operators LD , eD and ED on Ch∗(A) to define operators Lh
D , eh

D

and Eh
D on Hom(Ch∗(A),Ch∗(A)).

Proposition 2.1. On the module Hom(Ch∗(A),Ch∗(A)), the operators eh
D , Eh

D and Lh
D satisfy:

(1)
[
∂h, e

h
D

] = 0, (2)
[
∂c, e

h
D

] + [
∂c,E

h
D

] = Lh
D.

Proof. Taking p = −1 in Lemma 1.2, we know that, if f is a homogeneous element of degree q in Hom(Ch∗(A),

Ch∗(A)), we have [∂h, e
h
D](f ) = [b, eD]f − f [eD,b]. Since [eD,b] = 0 on the normalized complex Ch∗(A), (1) fol-

lows. Also,
[
∂c, e

h
D

]
(f ) = [b, eD]f − f [eD,b] + [B,eD]f − f [eD,B] = [B,eD]f − f [eD,B],

[
∂c,E

h
D

]
(f ) = [b,ED]f − f [ED,b] + [B,ED]f − f [ED,B] = [b,ED]f − f [ED,b].

From the analogue of the Cartan homotopy formula in Hochschild cohomology, we have [eD,B] + [ED,b] = LD

and hence (note that [eD,B] = [B,eD] and [ED,b] = [b,ED]) ([∂c, e
h
D] + [∂c,E

h
D])(f ) = ([B,eD] + [b,ED])f −

f ([eD,B] + [ED,B]) = LDf − f LD = Lh
D(f ). �

Given two derivations D and D′ on A, we know, from [6], that [LD,eD′ ] = e[D,D′]. We now prove the analogue of
this result.

Proposition 2.2. Let D and D′ be two derivations on A. Then, on the module Hom(Ch∗(A),Ch∗(A)), we have the
formula [Lh

D, eh
D′ ] = eh

[D,D′].

Proof. Let f be an element of Hom(Ch∗(A),Ch∗(A)) of degree q . Then:
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Lh
Deh

D′(f ) = Lh
D

(
eD′f − (−1)qf eD′

) = (
LDeD′f − (−1)qLDf eD′

) − (
eD′f LD − (−1)qf eD′LD

)
,

eh
D′Lh

D(f ) = eh
D′(LDf − f LD) = (eD′LDf − eD′f LD) − (−1)q(LDf eD′ − f LDeD′),

[
Lh

D, eh
D′

]
(f ) = LDeD′(f ) − eD′LD(f ) = [LD,eD′ ](f ) − (−1)qf [LD,eD′ ]

= e[D,D′]f − (−1)qf e[D,D′] = eh
[D,D′](f ). �

Finally, let Derk(A) denote the module of k-linear derivations on A and let Inn(A) denote the submodule of inner
derivations. Then, recall that; for the first Hochschild cohomology group H 1(A,A) of A with coefficients in A, we
know that H 1(A,A) ∼= Derk(A)/ Inn(A) and that the standard commutator on derivations makes H 1(A,A) into a Lie
algebra. Therefore, we have:

Proposition 2.3. For any n � 0, the module HHn(A,A) carries a Lie algebra action of H 1(A,A).

Proof. Let D ∈ Derk(A). From Proposition 1.3(a), we know that D induces a morphism Lh
D :HHn(A,A) →

HHn(A,A), ∀n � 0. From Proposition 1.3(b), we know that if D is an inner derivation, then Lh
D = 0. Hence, each

element x ∈ H 1(A,A) ∼= Derk(A)/ Inn(A) induces an operator Lh
x :HHn(A,A) → HHn(A,A). Furthermore, it is

easy to check that given two derivations D and D′ on A, [Lh
D,Lh

D′ ] = Lh
[D,D′], whence it follows that H 1(A,A) has

a Lie algebra action on each HHn(A,A). �
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