

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 347 (2009) 1173-1176

Algebraic Geometry

On the vector bundles over rationally connected varieties

Indranil Biswas^a, João Pedro P. dos Santos^b

^a School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
 ^b Institut de mathématiques de Jussieu, 175, rue du Chevaleret, 75013 Paris, France

Received 28 June 2009; accepted after revision 2 September 2009

Available online 19 September 2009

Presented by Jean-Pierre Demailly

Abstract

Let X be a rationally connected smooth projective variety defined over \mathbb{C} and $E \longrightarrow X$ a vector bundle such that for every morphism $\gamma : \mathbb{CP}^1 \longrightarrow X$, the pullback $\gamma^* E$ is trivial. We prove that E is trivial. Using this we show that if $\gamma^* E$ is isomorphic to $L(\gamma)^{\oplus r}$ for all γ of the above type, where $L(\gamma) \longrightarrow \mathbb{CP}^1$ is some line bundle, then there is a line bundle ζ over X such that $E = \zeta^{\oplus r}$. To cite this article: I. Biswas, J.P.P. dos Santos, C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Des fibrés vectoriels sur les variétés rationnellement connexes. Soit X une variété rationnellement connexe sur \mathbb{C} et soit $E \longrightarrow X$ un fibré vectoriel tel que, pour tout morphisme $\gamma : \mathbb{CP}^1 \longrightarrow X$, le fibré $\gamma^* E$ est trivial. Nous montrons que E est trivial. Nous en déduisons que si, pour tout γ comme avant, $\gamma^* E$ est isomorphe à $L(\gamma)^{\oplus r}$, où $L(\gamma) \longrightarrow \mathbb{CP}^1$ est un fibré en droites, alors il existe un fibré en droites ζ sur X et un isomorphisme $E \cong \zeta^{\oplus r}$. *Pour citer cet article : I. Biswas, J.P.P. dos Santos, C. R. Acad. Sci. Paris, Ser. I 347 (2009).*

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let *E* be a holomorphic vector bundle over a connected complex projective manifold *X*. If for every pair of the form (C, γ) , where *C* is a compact connected Riemann surface, and $\gamma : C \longrightarrow X$ is a holomorphic map, the pullback $\gamma^* E$ is semistable, then it is known that *E* is semistable, and $c_i(\text{End}(E)) = 0$ for all $i \ge 1$ [3, pp. 3–4, Theorem 1.2]. Our aim here is to show that if *X* is rationally connected, then the above conclusion remains valid even if we insert in the condition that *C* is a rational curve. We recall that a complex projective variety *X* is said to be *rationally connected* if any two points of *X* can be joined by an irreducible rational curve on *X*; see [9, Theorem 2.1] for equivalent conditions. We prove the following theorem:

Theorem 1.1. Let *E* be a vector bundle of rank *r* over a rationally connected smooth projective variety *X* defined over \mathbb{C} such that for every morphism

E-mail addresses: indranil@math.tifr.res.in (I. Biswas), dos-santos@math.jussieu.fr (J.P.P. dos Santos).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2009.09.006

 $\nu: \mathbb{C}P^1 \longrightarrow X.$

the pullback $\gamma^* E$ is isomorphic to $L(\gamma)^{\oplus r}$ for some line bundle $L(\gamma) \longrightarrow \mathbb{CP}^1$. Then there is a line bundle ζ over X such that $E = \zeta^{\oplus r}$.

In [1] this was proved under the extra assumption that $Pic(X) = \mathbb{Z}$ (see [1, p. 211, Proposition 1.2]). Theorem 1.1 is deduced from the following proposition (see Proposition 2.1):

Proposition 1.2. Let X be as in Theorem 1.1. Let $E \rightarrow X$ be a vector bundle such that for every morphism γ : $\mathbb{C}P^{\hat{1}} \longrightarrow X$, the pullback $\gamma^* E$ is trivial. Then E itself is trivial.

The condition in Theorem 1.1 that $\gamma^* E$ is of the form $L(\gamma)^{\oplus r}$ can be replaced by an equivalent condition which says that $\gamma^* E$ is semistable (see Corollary 2.3).

2. Criterion for triviality

Let X be a rationally connected smooth projective variety defined over \mathbb{C} . Let $E \longrightarrow X$ be a vector bundle.

Proposition 2.1. Assume that for every morphism

 $\gamma: \mathbb{C}P^1 \longrightarrow X$

the vector bundle $\gamma^* E \longrightarrow \mathbb{C}P^1$ is trivial. Then E itself is trivial.

Proof. Let $x \in X$ be a closed point. There is a smooth family of rational curves on X

$$\sigma \begin{pmatrix} Z & \xrightarrow{\varphi} & X \\ f \\ T \end{pmatrix}$$
(1)

where

(1) T is open in Mor(\mathbb{CP}^1, X ; (0:1) $\mapsto x$) (hence T is quasiprojective),

(2) $f \circ \sigma = \operatorname{Id}_T$.

(3) φ is dominant, and

(4) $\varphi(\sigma(t)) = x$ for all $t \in T$.

(See [4, Section 3], [8, Theorem 3].) Let

$$\beta := \left[\varphi\left(f^{-1}(t)\right)\right] \in H_2(X, \mathbb{Z})$$

be the homology class, where $t \in T(\mathbb{C})$. Let $\overline{\mathcal{M}}_{0,1}(X,\beta)$ be the moduli stack classifying families of stable maps from 1-pointed genus zero curves to X which represent the class β . (We are following the terminology of [5].) We know that $\overline{\mathcal{M}}_{0,1}(X,\beta)$ is a proper Deligne–Mumford stack [2, p. 27, Theorem 3.14].

Let

$$\rho: T \longrightarrow \overline{\mathcal{M}}_{0,1}(X,\beta) \tag{2}$$

be the morphism associated to the family in (1).

By "Chow's Lemma" [10, p. 154, Corollaire 16.6.1], there exists a projective \mathbb{C} -scheme Y together with a proper surjective morphism $\psi: Y \longrightarrow \overline{\mathcal{M}}_{0,1}(X,\beta)$. There exists a Cartesian diagram

where T_1 is a scheme and ψ_1 is proper and surjective. This last assertion is justified by the fact that the diagonal of a Deligne–Mumford stack is schematic ([10, p. 26, Lemme 4.2] and [10, p. 21, Corollaire 3.13]). As T is separated (it is open in Mor(\mathbb{CP}^1 , X)), we can apply Nagata's Theorem [11, p. 106, Theorem 3.2] to find a proper \mathbb{C} -scheme \overline{T}_1 and a schematically dense open immersion $i: T_1 \hookrightarrow \overline{T}_1$. Eliminating the "indeterminacy locus" (see e.g. [11, pp. 99–100]), we can find a blow-up

$$\xi:\overline{T}\longrightarrow\overline{T}_1$$

whose center is disjoint from T_1 and a morphism

$$\overline{\rho}:\overline{T}\longrightarrow Y$$

which extends $\rho_1: T_1 \longrightarrow Y$. The composition $\psi \circ \overline{\rho}: \overline{T} \longrightarrow \overline{\mathcal{M}}_{0,1}(X,\beta)$ represents a family of 1-pointed genus zero stable maps

$$\overline{\sigma} \begin{pmatrix} \overline{Z} & \overline{\phi} \\ \overline{f} \\ \overline{T} \\ T \end{pmatrix}$$
(3)

whose pullback via $i: T_1 \hookrightarrow \overline{T}$ is the pullback of the family in (1) via ψ_1 . Clearly $\overline{\varphi}$ is dominant (hence surjective)

and $\overline{\varphi} \circ \overline{\sigma}$ is a constant morphism. Note that, without loss of generality, we can assume \overline{T} to be *reduced*. We recall that the pullback of E by any map from $\mathbb{C}P^1$ is trivial. Consequently, for any point $t \in \overline{T}(\mathbb{C})$, the restriction of $\overline{E} := \overline{\varphi}^* E$ to the curve $\overline{f}^{-1}(t)$ — which is a tree of $\mathbb{C}\mathbb{P}^1$ — is trivial. Therefore, \overline{E} descends to \overline{T} . More precisely, the direct image $\overline{f}_*\overline{E}$ is a vector bundle on \overline{T} , and the canonical arrow

$$\overline{f}^* \overline{f}_* \overline{E} \longrightarrow \overline{E} \tag{4}$$

is an isomorphism [12, §5]. The homomorphism in (4) is injective because any section of a trivial vector bundle, over a connected projective scheme, that vanishes at one point actually vanishes identically; the homomorphism is surjective also because $\overline{E}|_{\overline{f}^{-1}(t)}$ is trivial for all t. We also note that the image of (4) by $\overline{\sigma}^*$ defines an isomorphism between $\overline{\sigma}^*\overline{E}$ and $\overline{f}_*\overline{E}$. Therefore, using (4),

$$\overline{f}^* \overline{\sigma}^* \overline{E} = \overline{E}.$$
(5)

Now from the condition that $\overline{\varphi} \circ \overline{\sigma}$ is a constant map it follows immediately that $\overline{\sigma}^* \overline{\varphi}^* E = \overline{\sigma}^* \overline{E}$ is a trivial vector bundle. Consequently, using (5) we conclude that the vector bundle $\overline{\varphi}^* E$ is trivial.

Since $\overline{\varphi}$ is a surjective and proper morphism, and $\overline{\varphi}^* E$ is trivial, we conclude that the Chern class $c_i(E)$ is numerically equivalent to zero for all $i \ge 1$.

Next we will show that the vector bundle *E* is semistable.

Let $C \hookrightarrow X$ be a smooth irreducible (proper) curve on X, and let $C' \hookrightarrow \overline{Z}$ be an irreducible curve such that $\overline{\varphi}(C') = C$. (The curve C' can be constructed as the closure of a closed point of the generic fiber of $\overline{\varphi}^{-1}(C) \longrightarrow C$.) Since the pullback of $E|_C$ to C' is trivial, so is the pullback of $E|_C$ to the normalization of C'. Consequently, the vector bundle $E|_C$ is semistable of degree zero. This allows us to conclude that E is semistable with respect to any chosen polarization on X.

Since E is semistable, and both $c_1(E)$ and $c_2(E)$ are numerically equivalent to zero, a theorem of Simpson says that E admits a flat connection (see [13, p. 40, Corollary 3.10]). On the other hand, X is simply connected because it is rationally connected ([4, p. 545, Theorem 3.5], [7, p. 362, Proposition 2.3]). Therefore, any flat vector bundle on X is trivial. In particular, the vector bundle E is trivial. \Box

As before, let E be a vector bundle over the rationally connected variety X. Let r be the rank of E.

Theorem 2.2. Assume that for every morphism

$$\gamma:\mathbb{C}P^1\longrightarrow X,$$

there is a line bundle $L(\gamma) \longrightarrow \mathbb{C}P^1$ such that $\gamma^* E = L(\gamma)^{\oplus r}$. Then there is a line bundle $\zeta \longrightarrow X$ such that $E = \zeta^{\oplus r}.$

Proof. The above condition on $\gamma^* E$ and Proposition 2.1 ensure that the vector bundle End(E) is trivial. This implies that, for any $x_0 \in X(\mathbb{C})$, the evaluation map

$$H^0(X, \operatorname{End}(E)) \longrightarrow \operatorname{End}_{\mathbb{C}}(E(x_0))$$
 (6)

is as isomorphism; let $A: E \longrightarrow E$ be an isomorphism such that all the eigenvalues $\lambda_1, \ldots, \lambda_r$ of $A(x_0)$ are distinct. As the eigenvalues of A(x) are independent of $x \in X$, it follows that E is isomorphic to the direct sum of the line subbundles

 $\mathcal{L}_i := \operatorname{kernel}(\lambda_i - A) \subseteq E, \quad 1 \leq i \leq r.$

Since the evaluation map in (6) is an isomorphism, we have

 $\dim H^0(X, \mathcal{L}_i \otimes \mathcal{L}_i^*) \leqslant 1$

for all $i, j \in [1, r]$. Note that if $H^0(X, \mathcal{L}_i \otimes \mathcal{L}_i^*) = 0$ for some i, j, then

$$\dim H^0(X, \operatorname{End}(E)) < r^2,$$

which contradicts the fact that End(E) is trivial. For $s_{ij} \in H^0(X, \mathcal{L}_i \otimes \mathcal{L}_j^*) \setminus \{0\}$, $i, j \in [1, r]$, the composition $s_{ij} \circ s_{ji}$ is an automorphism of \mathcal{L}_i , hence each s_{ij} is an isomorphism. This completes the proof of the theorem. \Box

A theorem due to Grothendieck says that any vector bundle over \mathbb{CP}^1 decomposes into a direct sum of line bundles [6, p. 126, Théorème 2.1]. Therefore, Theorem 2.2 has the following corollary:

Corollary 2.3. If for every morphism $\gamma : \mathbb{C}P^1 \longrightarrow X$, the vector bundle $\gamma^* E$ is semistable, then there is a line bundle $\zeta \longrightarrow X$ such that $E = \zeta^{\oplus r}$.

Acknowledgements

We thank N. Fakhruddin for useful comments. We thank Carolina Araujo for pointing out [1].

References

- [1] M. Andreatta, J.A. Wiśniewski, On manifolds whose tangent bundle contains an ample subbundle, Invent. Math. 146 (2001) 209-217.
- [2] K. Behrend, Yu. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996) 1-60.
- [3] I. Biswas, U. Bruzzo, On semistable principal bundles over a complex projective manifold, Int. Math. Res. Not. IMRN 12 (2008), Art. ID rnn035.
- [4] F. Campana, On twistor spaces of the class C, J. Diff. Geom. 33 (1991) 541-549.
- [5] W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology, http://arxiv.org/abs/alg-geom/9608011.
- [6] A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957) 121–138.
- [7] J. Kollár, Fundamental groups of rationally connected varieties, Michigan Math. J. 48 (2000) 359-368.
- [8] J. Kollár, Rationally connected varieties and fundamental groups, in: Higher Dimensional Varieties and Rational Points, Budapest, 2001, in: Bolyai Soc. Math. Stud., vol. 12, Springer, Berlin, 2003, pp. 69–92, http://arxiv.org/abs/math/0203174.
- [9] J. Kollár, Y. Miyaoka, S. Mori, Rationally connected varieties, J. Algebraic Geom. 1 (1992) 429-448.
- [10] G. Laumon, L. Moret-Bailly, Champs algébriques, Ergeb. Math. Grenzgeb., vol. 39, Springer, 2000.
- [11] W. Lütkebohmert, On compactification of schemes, Manuscr. Math. 80 (1993) 95–111.
- [12] D. Mumford, Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Oxford University Press, London, 1970.
- [13] C.T. Simpson, Higgs bundles and local systems, Publ. Math. Inst. Hautes Études Sci. 75 (1992) 5-95.

1176