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Abstract

The purpose of this Note is to show that loci of (special) Weierstrass points on the fibers of a family π :X → S of smooth
curves of genus g � 2 can be studied by simply pulling back the Schubert calculus naturally living on a suitable Grassmann bundle
over X. Using such an idea we prove new results regarding the decomposition in A∗(X) of the class of the locus of Weierstrass
points having weight at least 3 as the sum of classes of Weierstrass points having “bounded from below” gaps sequences. To cite
this article: L. Gatto, P. Salehyan, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Familles de points de Weierstrass speciaux. L’objectif principal de cette Note est de montrer que les lieux de points de
Weierstrass speciaux dans une famille générale de courbes lisses X → S de genre g � 2 peuvent être étudiés simplement en tirant
en arrière le calcul de Schubert qui vit naturellement dans une fibrée opportune de Grassmann. En utilisant cette idée nous obtenons
des nouveaux résultats concernant la décomposition de la classe dans A∗(X) du lieu des points de Weierstrass qui ont poids au
moins 3 comme somme des classes de points de Weierstrass avec suites particulières de lacunes. Pour citer cet article : L. Gatto,
P. Salehyan, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let π :X → S be a family of smooth complex projective curves of genus g � 2, parametrized by some regular
scheme S and let Kπ be the relative canonical sheaf of π . For each h � −1, we denote by JhKπ the vector bundle of
rank h + 1 over X of the hth relative jets of Kπ : we set J 0Kπ = Kπ and J−1Kπ = 0. Let Eπ := π∗ωπ be the Hodge
bundle of the family, a locally free sheaf of rank g over S and, for each i � 0, let λi := ci(Eπ ) ∈ Ai(S) be the ith Chern
class of the bundle Eπ . For each h � −1 we denote by ∂h,P the natural evaluation map (π∗

Eπ )P → Jh
P Kπ , sending

(P,ω) ∈ (π∗
Eπ )s to ∂h,P ω, which locally on the fiber over s is the evaluation of ω ∈ H 0(Xs ,Kπ(P )) at P together

with its first h derivatives (here π(P ) = s). Let ∂h :π∗
Eπ → JhKπ be the bundle map gotten by patching together

all such evaluation maps. Clearly the map ∂2g−2 :π∗
Eπ → J 2g−2Kπ is a vector bundle monomorphism, because if
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ω ∈ H 0(Xπ(P ),Kπ(P )), ∂2g−2(P,ω) = ∂2g−2,P ω = 0 if and only if ω vanishes at P with multiplicity at least 2g − 1,
hence ω must be zero for degree reasons. For each k � 1, let ρk :G(k,J 2g−2Kπ) → X denote the Grassmann bundle
of k-planes in the fibers of ρk and let 0 → Sk → ρ∗

k J 2g−2Kπ → Qk → 0 be the universal exact sequence over it: Sk

is the rank k universal subbundle of ρ∗
k J 2g−2Kπ and Qk is the universal quotient of it (of rank 2g − 1 − k). Thus the

monomorphism ∂2g−2 induces a section ιg :X → G(g,J 2g−2Kπ) of ρg defined as:

ιg(P ) = ∂2g−2,P

(
H 0(Xs ,KXs

)
) ⊆ G

(
g,J

2g−2
P Kπ

)
, (1)

where, for each s ∈ S and each P ∈ π−1(s), ∂2g−2,P (H 0(Xs ,KXs
)) denotes the ∂2g−2,P -monomorphic image of

H 0(Xπ(P ),KXs
) inside the vector space J

2g−2
P Kπ . By the universal property of Grassmann schemes, it turns out that

ι∗g Sg is isomorphic to π∗Eπ , while ι∗g(ρ∗
gJ 2g−2Kπ) = J 2g−2Kπ , i.e. the map ∂2g−2 is the pull-back of the universal

map 0 → Sg

τg−→ ρ∗
gJ 2g−2Kπ . For each j � i, let pj,i be the natural projection J j−1Kπ → J i−1Kπ and let pi :=

p2g−1,i . For each k � 1, denote by ε : Sk → ρ∗
k Kπ the map p1 ◦ τk ; furthermore, let ∂jε := pj+1 ◦ τk , 1 � j � h + 1.

The composition ∂hε : Sk → ρ∗
k J 2g−2Kπ , of p2g−1 with τk , will be identified with the monomorphism τk tout court.

For each k � 1 define ∂−1ε = 0 and, for each 1 � i1 < · · · < ik � 2g − 1, let Ω(i1,...,ik)(J
•Kπ) be the set of all

Λ ∈ G(k,J 2g−2Kπ) such that rkΛ(∂ij −2ε) � j − 1, for all j ∈ {1, . . . , k}. In particular, Ω(i1)(J
•Kπ) = {u ∈ S1 |

rku(∂i1−2ε) = 0}.
A local analysis shows that the expected codimension of the Schubert variety Ω(i1,...,ik)(J

•K) of G(k,J 2g−2Kπ)

is (i1 − 1)+ · · ·+ (ik − k). In particular, Ω(i)(J
•K), 1 � i � 2g − 1 has the expected codimension i − 1. It is the zero

locus of the vector bundle map ∂i−2ε : S1 → ρ∗
1J i−2Kπ . Thinking of ∂i−2ε as a section of the bundle ρ∗

1J i−2Kπ ⊗ S ∨
1 ,

define

εi := [
Ωi

(
J •K

)] ∩ [
P
(
J 2g−2Kπ

)] = ci−1
(
ρ∗

1J i−2Kπ ⊗ S ∨
1

) ∈ A∗
(
P
(
J 2g−2Kπ

))
.

Notice that ε1 is the fundamental class of A∗(P(J 2g−2Kπ)). It is easy to show that (ε1, . . . , ε2g−2, ε2g−1) is an
A∗(X)-basis of A∗(P(J 2g−2Kπ)). In fact, for each 1 � i � 2g − 1, εi = μi + ∑i−1

j=1 ρ∗
1cj (J

i−2Kπ)μi−j , where

μi := c1(S1)
i ∩ [P(J 2g−2Kπ)], and (μ1, . . . ,μ2g−1) is a basis of A∗(P(J 2g−2Kπ)) [1, Example 8.3.4].

By virtue of [7] (see also [3], [4]) {εi1 ∧ · · · ∧ εik | 1 � i1 < · · · < ik � 2g − 1} is a basis of A∗(G(k, J 2g−2Kπ)) as
well.

Theorem 1.1. For each k � 1 and each 1 � i1 < · · · < ik � 2g − 1 one has:

[
Ω(i1,...,ik)

(
J •Kπ

)] = εi1 ∧ · · · ∧ εik ∈
k∧

A∗
(
P
(
J 2g−2Kπ

)) ∼= A∗
(
G

(
k, J 2g−2Kπ

))
.

Proof. We are applying [10, Theorem 7.3] by Laksov and Thorup rephrased by considering flags of quotient bundles
instead of subbundles. See also [5] (and [9] for general background). �
2. Application to loci of Weierstrass points

Let WGS(P ) = 〈1, n2, . . . , ng〉 be the Weierstrass gap sequence at P ∈ Xπ(P ). We say that WGS(P ) � (i1, . . . , ig)

if and only if nj � ij for each 1 � j � g. It is easy to check that ιg(P ) ∈ Ω(i1,...,ig)(J
•Kπ) if and only if WGS(P ) �

(i1, . . . , ig). Denote by Vπ(i1, . . . , ig) = {P ∈ X | WGS(P ) = (i1, . . . , ig)} and with Wπ(i1, . . . , ig) = {P ∈ X |
WGS(P ) � (i1, . . . , ig)}. Clearly Vπ(i1, . . . , ig) ⊆ Wπ(i1, . . . , ig). We give Wπ(i1, . . . , ig) the scheme structure in-
duced by the Schubert varieties Ω(i1,...,ig)(J

•Kπ), i.e. Wπ(i1, . . . , ig) = ι−1
g (Ω(i1,...,ig)(J

•K)) ∼= Ω(i1,...,ig)(J
•Kπ) ∩

ιg(X).
As a consequence of the definition of Wπ(I) and of Theorem 1.1, one sees that if Wπ(i1, . . . , ig) has the ex-

pected codimension
∑g

j=1(ij − j), then [Wπ(i1, . . . , ig)] = ι∗g(εi1 ∧ · · · ∧ εig ). Notice that if P ∈ X is a hyperelliptic
Weierstrass point then it obviously belongs to Wπ(1,3,4, . . . , g + 1). Conversely, if P ∈ Wπ(1,3,4, . . . , g + 1),
then WGS(P ) � (1,3,4, . . . , g + 1). Since, the complement of WGS(P ) must be a semigroup, the only admis-
sible Weierstrass gap sequence greater than (1,3,4, . . . , g + 1) is (1,3,5, . . . ,2g − 1). In this case one has that
Wπ(1,3,4, . . . , g + 1) = Vπ(1,3, . . . ,2g − 1) and then:

[
Vπ(1,3, . . . ,2g − 1)

] = [
Wπ(1,3,4, . . . , g + 1)

]

= ι∗g
[
Ω(1,3,4,...,g+1)(J

•Kπ)
] = ι∗g

(
ε1 ∧ ε3 ∧ · · · ∧ ε2g−1). (2)
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Expressing the right-hand side of (2) in terms of the basis (μ1, . . . ,μg) and pulling back via ιg , one gets precisely
the expression displayed in [13, p. 314]. Computational details will appear in [6]. Furthermore, if π :X → S is the
“universal curve” Cg → Mg , then

Cg = Wπ(1, . . . , g) ⊇ Wπ(1,2, . . . , g − 1, g + 1) ⊇ Wπ(1,2, . . . , g − 2, g + 1) ⊇ · · · ⊇ Wπ(1,3,4, . . . , g + 1)

and

Mg = π
(
Wπ(1, . . . , g)

) ⊇ π
(
Wπ(1,2, . . . , g − 1, g + 1)

)

⊇ π
(
Wπ(1,2, . . . , g − 2, g + 1)

) ⊇ · · · ⊇ π
(
Wπ(1,3,4, . . . , g + 1)

)

are precisely the Arbarello’s flag as in [13, p. 310].

3. The classes of Wπ(I)

We present now the main results of our forthcoming [6] (cf. [11,12]). Let π :X → S be a family of smooth curves of
genus g � 4 parametrized by a smooth scheme S of dimension at least 2. By [8, Theorem 3.7], each irreducible com-
ponent of the locus V wt(3)(π) := {P ∈ X | P is a Weierstrass point of weight � 3} has the expected codimension 3.
This locus is not irreducible. Indeed, at least set theoretically:

V wt(3) = Wπ(Ig,1) ∪ Wπ(Ig,2) ∪ Wπ(Ig,3)

where, for notational simplicity, we set:

Ig,1 = (1, . . . , g − 3, g − 1, g, g + 1), Ig,2 = (1,2, . . . , g − 2, g, g + 2), and

Ig,3 = (1, . . . , g − 1, g + 3).

Here is a higher codimensional analogous of [8, Theorem 4.6] (see also [2]):

Theorem 3.1. The equality [V wt(3)] = [Wπ(Ig,1)] + 2[Wπ(Ig,2)] + [Wπ(Ig,3)] holds in A∗(X).

Sketch of a proof. The class of V wt(3) was computed in [8, Proposition 4.9] (is the expression into the brackets at
the end of the proof). The expression of the three summands occurring into the decomposition of [V wt(3)] are also
easily computable by using standard Schubert calculus on Grassmann bundles, possibly in the form [7], and pulling
back via ig . Then one checks that the left-hand side coincides with the sum occurring on the right-hand side (see the
example in genus 4 below). �

The piece of Schubert calculus necessary to predict and prove the decomposition stated in Theorem 3.1 and many
other similar decompositions will be explained in [6]. By the way, all of them can be checked by direct computations.
Notice that one can find expressions of new classes (in A∗(X)) already in genus 4. In this case one has the special case
of Theorem 3.1 for g = 4:

[
V wt(3)(π)

] = ι∗4
(
ε1 ∧ ε3 ∧ ε4 ∧ ε5) + 2ι∗4

(
ε1 ∧ ε2 ∧ ε4 ∧ ε6) + ι∗4

(
ε1 ∧ ε2 ∧ ε3 ∧ ε7), (3)

and it may be easily checked that:

ι∗4
(
ε1 ∧ ε3 ∧ ε4 ∧ ε5) = 15K3 − 7K2π∗λ1 + 3Kπ∗λ2 − π∗λ3,

ι∗4
(
ε1 ∧ ε2 ∧ ε4 ∧ ε6) = 285K3 − 90K2π∗λ1 + (

9π∗λ2 − 6(π∗λ1)
2)K + π∗λ1π

∗λ2 − π∗λ3, (4)

ι∗4
(
ε1 ∧ ε2 ∧ ε3 ∧ ε7) = 735K3 − 175K2π∗λ1 + 21K

(
(π∗λ1)

2 − π∗λ2
)

+ (π∗λ1)
3 − 2π∗λ1π

∗λ2 + π∗λ3, (5)

where, for notational brevity, we have set K := ρ∗
4c1(Kπ). Notice that (3) is precisely the expression for the class

of hyperelliptic points in fibers of π which occurs into braces at [13, p. 278], fourth line from the top, computed for
g = 4. Expression (5) can be computed applying Porteous’ formula to the natural map π∗

Eπ → J g+1Kπ (see [8]) and
the class of Wπ(1,2,4,6) (i.e. the class of W(Ig,2) for g = 4) is new. Furthermore substituting such values into (3)
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one gets [V wt(3)(π)] = 1320K3 − 362K2π∗λ1, the known expression computed in [8] (formula at the bottom of
p. 2252 for g = 4).

The decomposition stated in Theorem 3.1, whose (3) is the particular case for g = 4, is new as well. Obviously
Vπ(1,3,5,7) is closed in X, because Wπ(1,3,4,5) = Vπ(1,3,5,7) and Wπ(1,3,5,7) is closed. In [6] we shall prove
that Vπ(1,2,4,7), Vπ(1,2,3,7) are closed as well, being (possibly union of) irreducible components of Wπ(1,2,4,6)

and Wπ(1,2,3,7).

Acknowledgement

Work partially sponsored by PRIN “Geometria sulle Varietà Algebriche” (Coordinatore A. Verra), by INDAM-
GNSAGA, Politecnico di Torino and FAPESP-Brazil, Processo n. 2008/04401-1.

References

[1] W. Fulton, Intersection Theory, Springer-Verlag, 1984.
[2] L. Gatto, (Notes on) Intersection Theory on Moduli Space of Curves, Monografas de Matemática, Instituto Nacional de Matemática Pura e

Aplicada, Rio de Janeiro, 2000.
[3] L. Gatto, Schubert calculus via Hasse–Schmidt derivations, Asian J. Math. 9 (3) (2005) 315–322.
[4] L. Gatto, Schubert calculus: An algebraic introduction, 25◦ Colóquio Brasileiro de Matemática, Instituto Nacional de Matemática Pura e

Aplicada, Rio de Janeiro, 2005.
[5] L. Gatto, A. Nigro, A remark on Porteous’ formula (2009), in preparation.
[6] L. Gatto, P. Salehyan, Weierstrass points of the universal curve (2009), in preparation.
[7] L. Gatto, T. Santiago, Schubert calculus on Grassmann algebra, Canad. Math. Bull. 52 (2) (2009) 200–212.
[8] L. Gatto, F. Ponza, Derivatives of Wronskians with applications to families of special Weierstrass points, Trans. Amer. Math. Soc. 351 (6)

(1999) 2233–2255.
[9] D. Laksov, A. Thorup, A determinantal formula for the exterior powers of the polynomial ring, Indiana Univ. Math. J. 56 (2) (2007) 825–845.

[10] D. Laksov, A. Thorup, Schubert calculus on Grassmannians and exterior products, Indiana Univ. Math. J. 58 (1) (2009) 283–300.
[11] R.F. Lax, Weierstrass points of the universal curve, Math. Ann. 216 (1975) 35–42.
[12] R.F. Lax, Gap sequences and moduli in genus 4, Math. Z. 175 (1980) 67–75.
[13] D. Mumford, Towards an enumerative geometry of moduli space of curves, in: Arithmetic and Geometry, vol. II, in: Progr. Math., vol. 36,

Birkhäuser Boston, Boston, MA, 1983, pp. 271–328.


	Families of special Weierstrass points
	Introduction
	Application to loci of Weierstrass points
	The classes of Wpi(I)
	Acknowledgement
	References


