Partial Differential Equations

A non-existence result for the Ginzburg-Landau equations

Ayman Kachmar, Mikael Persson
Aarhus University, Department of Mathematical Sciences, Ny Munkegade, DK-8000 Aarhus C, Denmark
Received 15 July 2009; accepted after revision 23 September 2009
Available online 9 October 2009
Presented by Haïm Brezis

Abstract

We consider the stationary Ginzburg-Landau equations in $\mathbb{R}^{d}, d=2,3$. We exhibit a class of applied magnetic fields (including constant fields) such that the Ginzburg-Landau equations do not admit finite energy solutions. To cite this article: A. Kachmar, M. Persson, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un résultat de non-existence pour les équations de Ginzburg-Landau. Nous considérons les équations de Ginzburg-Landau dans $\mathbb{R}^{d}, d=2,3$. Nous exhibons une classe de champs magnétiques appliqués telle que les équations de Ginzburg-Landau n'admettent pas de solution d'énergie finie. Pour citer cet article : A. Kachmar, M. Persson, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The aim of the present note is to study the Ginzburg-Landau system of equations in \mathbb{R}^{2},

$$
\left\{\begin{array}{l}
-(\nabla-i A)^{2} \psi=\left(1-|\psi|^{2}\right) \psi \tag{1}\\
-\nabla^{\perp}(\operatorname{curl} A-H)=\operatorname{Im}(\psi \overline{(\nabla-i A) \psi})
\end{array}\right.
$$

Here $\psi \in H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2} ; \mathbb{C}\right)$ is the complex order parameter, $A \in H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right)$ is the magnetic vector potential, curl A is the induced magnetic field

$$
\begin{equation*}
B=\operatorname{curl} A=\partial_{x_{1}} A_{2}-\partial_{x_{2}} A_{1} \tag{2}
\end{equation*}
$$

$H \in L_{\text {loc }}^{2}\left(\mathbb{R}^{2}\right)$ is the applied magnetic field, and $\nabla^{\perp}=\left(-\partial_{x_{2}}, \partial_{x_{1}}\right)$ is the Hodge gradient.
Solutions of (1) are of particular interest in the physics literature as they do include periodic solutions with vortices distributed in a uniform lattice, named as Abrikosov's solution. We refer the reader to [1] for the physical motivation and to [2,4] for mathematical results in that direction.

[^0]Eqs. (1) are formally the Euler-Lagrange equations of the following Ginzburg-Landau energy,

$$
\begin{equation*}
\mathcal{G}(\psi, A)=\int_{\mathbb{R}^{2}}\left(|(\nabla-i A) \psi|^{2}+\frac{1}{2}\left(1-|\psi|^{2}\right)^{2}+|\operatorname{curl} A-H|^{2}\right) \mathrm{d} x . \tag{3}
\end{equation*}
$$

A solution (ψ, A) of (1) is said to have finite energy if $\mathcal{G}(\psi, A)<\infty$. When the applied magnetic field $H \in L^{2}\left(\mathbb{R}^{2}\right)$, it is proved in $[6,8]$ that the system (1) admits finite energy solutions. In the present note, we would like to discuss the optimality of the hypothesis $H \in L^{2}\left(\mathbb{R}^{2}\right)$ thereby establishing negative results when this hypothesis is violated.

Our result is that if H is not allowed to decay fast at infinity (especially if it is constant), then there are no finite energy solutions to (1):

Theorem 1. Let $\alpha<1$. Assume that the applied magnetic field $H \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{2}\right)$ and that there exist constants $R_{0}>0$ and $h>0$ such that $H(x) \geqslant \frac{h}{|x|^{\alpha}}$ for all x with $|x|>R_{0}$. Then the Ginzburg-Landau system (1) does not admit finite energy solutions.

Remark 2. We note that $\frac{1}{|x|^{\alpha}} \in L^{2}\left(\mathbb{R}^{2} \backslash B(0,1)\right)$ if and only if $\alpha>1$, which means that the result in Theorem 1 is really complementary to the results in $[6,8]$.

Remark 3. The same non-existing result still holds if we instead impose the following properties on H : (1) $H \notin$ $L^{2}\left(\mathbb{R}^{2}\right)$, (2) there exists $R_{0}>0$ such that for $H(x)$ is positive for $|x|>R_{0}$, and (3) there exists $R_{1}>0$ such that the reverse Hölder-inequality

$$
\begin{equation*}
\int_{B(0, R)} H(x) \mathrm{d} x \geqslant|B(0, R)|^{1 / 2}\left(\int_{B(0, R)} H(x)^{2} \mathrm{~d} x\right)^{1 / 2} \tag{4}
\end{equation*}
$$

holds for all $R>R_{1}$. The proof follows the proof of Theorem 1 until the end, where the alternative properties of H are used.

We conclude by mentioning an immediate generalization to the 3-dimensional equations. Let $\mathbf{H}=\left(H_{1}, H_{2}, H_{3}\right) \in$ $L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ be a given vector field. Consider the Ginzburg-Landau equations in \mathbb{R}^{3},

$$
\left\{\begin{array}{l}
-(\nabla-i A)^{2} \psi=\left(1-|\psi|^{2}\right) \psi \tag{5}\\
-\operatorname{curl}(\operatorname{curl} A-H)=\operatorname{Im}(\psi \overline{(\nabla-i A) \psi}) .
\end{array}\right.
$$

A solution $(\psi, A) \in H_{\text {loc }}^{1}\left(\mathbb{R}^{3} ; \mathbb{C}\right) \times H_{\text {loc }}^{1}\left(\mathbb{R}^{3} ; R^{3}\right)$ is said to have finite energy if $\mathcal{E}(\psi, A)=\int_{\mathbb{R}^{3}}\left(|(\nabla-i A) \psi|^{2}+\frac{1}{2}(1-\right.$ $\left.\left.|\psi|^{2}\right)^{2}+|\operatorname{curl} A-H|^{2}\right) \mathrm{d} x<\infty$. We have then a similar result to Theorem 1 .

Theorem 4. Let $\alpha<\frac{3}{2}$. Assume that there exist $h>0$ and $R_{0}>0$ such that the applied magnetic field $\mathbf{H}=$ $\left(H_{1}, H_{2}, H_{3}\right) \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ satisfies, $H_{3}(x) \geqslant \frac{h}{|x|^{\alpha}} \forall x$ such that $|x| \geqslant R_{0}$. Then the Ginzburg-Landau system (5) does not admit finite energy solutions.

Remark 5. Remark 3 carries over to three dimensions, but with any component H_{j} in place of H.
The proof of Theorem 4 is exactly the same as that of Theorem 1. So, we will give details only for the proof of Theorem 1. The essential key for proving Theorem 1 is a result from the spectral theory of magnetic Schrödinger operators stated in Lemma 7 below.

2. Two auxiliary lemmas

We start with the following observation concerning the Ginzburg-Landau system (1):
Lemma 6. Assume that $H \in L_{\text {loc }}^{2}\left(\mathbb{R}^{2}\right)$. Let (ψ, A) be a weak solution of (1) such that $\mathcal{G}(\psi, A)<\infty$. Then $|\psi| \leqslant 1$ in \mathbb{R}^{2}.

Proof. This result was proved by Yang [7, Lemma 3.1] for \mathbb{R}^{3} under the assumption $H \in L^{2}\left(\mathbb{R}^{3}\right)$. The assumption on H is not used in Yang's proof but the proof only relies on the fact that the energy of (ψ, A) is finite. The proof of this lemma is line-by-line the same as [7], but with \mathbb{R}^{2} in place of \mathbb{R}^{3}.

A key-ingredient is the following result from the spectral theory of magnetic Schrödinger operators.
Let χ be a cut-off function such that $0 \leqslant \chi \leqslant 1, \chi=1$ in $\left[0, \frac{1}{2}\right]$ and $\chi=0$ in $[1, \infty)$. For all $R>0$, we introduce the function,

$$
\begin{equation*}
\chi_{R}(x)=\chi\left(\frac{|x|}{R}\right), \quad \forall x \in \mathbb{R}^{2} \tag{6}
\end{equation*}
$$

Lemma 7. There exists a constant $C>0$ such that, for all $\psi \in H^{1}\left(\mathbb{R}^{2} ; \mathbb{C}\right), A \in H_{l o c}^{1}\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right)$ and $R>0$, the following inequality holds,

$$
\int_{B(0, R)}|(\nabla-i A) \psi|^{2} \mathrm{~d} x \geqslant \frac{1}{2} \int_{B(0, R)} B(x)\left|\chi_{R} \psi\right|^{2} \mathrm{~d} x-\frac{C}{R^{2}} \int_{B(0, R) \backslash B(0, R / 2)}|\psi(x)|^{2} \mathrm{~d} x .
$$

Here $B=\operatorname{curl} A$ and χ_{R} the function from (6).

Proof. We write,

$$
\int_{B(0, R)}|(\nabla-i A) \psi|^{2} \mathrm{~d} x \geqslant \int_{B(0, R)}\left|\chi_{R}(\nabla-i A) \psi\right|^{2} \mathrm{~d} x \geqslant \frac{1}{2} \int_{B(0, R)}\left|(\nabla-i A)\left(\chi_{R} \psi\right)\right|^{2} \mathrm{~d} x-\int_{B(0, R)}\left|\psi \nabla \chi_{R}\right|^{2} \mathrm{~d} x
$$

To finish the proof, we just use the following well known inequality (see [3] or [5, Lemma 2.4.1]),

$$
\int_{B(0, R)}|(\nabla-i A) \phi|^{2} \mathrm{~d} x \geqslant \pm \int_{B(0, R)} B(x)|\phi|^{2} \mathrm{~d} x, \quad \forall \phi \in H_{0}^{1}(B(0, R)) .
$$

3. Proof of Theorem 1

Assume that (ψ, A) is a finite energy solution of (1). Thanks to Lemma 6 we have $|\psi| \leqslant 1$ in \mathbb{R}^{2}.
Recalling the hypothesis on the applied magnetic field H that we assumed in Theorem 1, we may pick $R_{0}>0$ such that

$$
\begin{equation*}
H(x) \geqslant \frac{h}{|x|^{\alpha}}, \quad \forall|x| \geqslant R_{0} \tag{7}
\end{equation*}
$$

Applying Lemma 7, with (ψ, A) as above, a solution of (1), we obtain with $B=\operatorname{curl} A$,

$$
\int_{\mathbb{R}^{2}}|(\nabla-i A) \psi|^{2} \mathrm{~d} x \geqslant \frac{1}{2} \int_{B(0, R)} B(x)\left|\chi_{R} \psi\right|^{2} \mathrm{~d} x-\frac{C}{R^{2}} \int_{B(0, R) \backslash B(0, R / 2)}|\psi|^{2} \mathrm{~d} x
$$

Let $R>2 R_{0}$ and $\Omega_{R}=\left\{x \in \mathbb{R}^{2}: R_{0}<|x|<R\right\}$. Then we may write,

$$
\int_{\mathbb{R}^{2}}|(\nabla-i A) \psi|^{2} \mathrm{~d} x \geqslant \frac{1}{2} \int_{\Omega_{R}} B(x)\left|\chi_{R} \psi\right|^{2} \mathrm{~d} x+\frac{1}{2} \int_{B\left(0, R_{0}\right)} B(x)\left|\chi_{R} \psi\right|^{2} \mathrm{~d} x-\frac{C}{R^{2}} \int_{B(0, R) \backslash B(0, R / 2)}|\psi|^{2} \mathrm{~d} x
$$

Using that $\int_{\mathbb{R}^{2}}|(\nabla-i A) \psi|^{2} \mathrm{~d} x \leqslant \mathcal{G}(\psi, A), A \in H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2}\right)$ and $\left|\chi_{R} \psi\right| \leqslant 1$, we get a constant C_{0} depending on R_{0} such that,

$$
\begin{equation*}
\mathcal{G}(\psi, A) \geqslant \frac{1}{2} \int_{\Omega_{R}} B(x)\left|\chi_{R} \psi\right|^{2} \mathrm{~d} x-C_{0} \tag{8}
\end{equation*}
$$

So, let us handle the first term in the right-hand side above. We write,

$$
\begin{equation*}
\int_{\Omega_{R}} B(x)\left|\chi_{R} \psi\right|^{2} \mathrm{~d} x=\int_{\Omega_{R}} H(x)\left|\chi_{R} \psi\right|^{2} \mathrm{~d} x+\int_{\Omega_{R}}(B(x)-H(x))\left|\chi_{R} \psi\right|^{2} \mathrm{~d} x . \tag{9}
\end{equation*}
$$

In order to handle the last term on the right of (9), we apply a Cauchy-Schwarz inequality and use the fact that $\left|\chi_{R} \psi\right| \leqslant 1$. In this way we get,

$$
\left.\left.\left|\int_{\Omega_{R}}(B(x)-H(x))\right| \chi_{R} \psi\right|^{2} \mathrm{~d} x\left|\leqslant\left(\int_{\Omega_{R}}|B(x)-H(x)|^{2} \mathrm{~d} x\right)^{1 / 2}\left(\int_{\Omega_{R}} \mathrm{~d} x\right)^{1 / 2} \leqslant(\mathcal{G}(\psi, A))^{1 / 2}\right| \Omega_{R}\right|^{1 / 2} .
$$

Implementing this bound together with (7) in the right side of (8), we get the following lower bound,

$$
\begin{equation*}
\int_{\Omega_{R}} B(x)\left|\chi_{R} \psi\right|^{2} \mathrm{~d} x \geqslant \int_{\Omega_{R}} \frac{h}{|x|^{\alpha}}\left|\chi_{R} \psi\right|^{2} \mathrm{~d} x-(\mathcal{G}(\psi, A))^{1 / 2}\left|\Omega_{R}\right|^{1 / 2} . \tag{10}
\end{equation*}
$$

We need only to bound from below $\int_{\Omega_{R}} \frac{h}{|x|^{\alpha}}\left|\chi_{R} \psi\right|^{2} \mathrm{~d} x$. Actually, using that $\chi_{R}=1$ in $B(0, R / 2)$ and a CauchySchwarz inequality, we obtain,

$$
\begin{aligned}
\int_{\Omega_{R}} \frac{h}{|x|^{\alpha}}\left|\chi_{R} \psi\right|^{2} \mathrm{~d} x & \geqslant \int_{\Omega_{R / 2}} \frac{h}{|x|^{\alpha}}|\psi|^{2} \mathrm{~d} x=\int_{\Omega_{R / 2}} \frac{h}{|x|^{\alpha}} \mathrm{d} x+\int_{\Omega_{R / 2}} \frac{h}{|x|^{\alpha}}\left(|\psi|^{2}-1\right) \mathrm{d} x \\
& \geqslant \frac{2 \pi h}{2-\alpha}\left((R / 2)^{2-\alpha}-R_{0}^{2-\alpha}\right)-(\mathcal{G}(\psi, A))^{1 / 2} h\left(\frac{2 \pi}{2-2 \alpha}\right)^{1 / 2}\left((R / 2)^{2-2 \alpha}-R_{0}^{2-2 \alpha}\right)^{1 / 2}
\end{aligned}
$$

Now we use the assumption that $\mathcal{G}(\psi, A)<\infty$. In this way, we get by implementing the right-hand side above in (10) and then by substituting the resulting lower bound into (8), a constant C such that,

$$
\begin{equation*}
\mathcal{G}(\psi, A) \geqslant \frac{2^{\alpha-1} \pi h}{2-\alpha} R^{2-\alpha}-C R^{1-\alpha}-C R-C . \tag{11}
\end{equation*}
$$

Making $R \rightarrow \infty$ and recalling that $\alpha<1$, we get a contradiction to the assumption that the energy $\mathcal{G}(\psi, A)$ is finite, thereby finishing the proof of Theorem 1.

Acknowledgements

The authors wish to thank the anonymous referee for valuable suggestions. A.K. is supported by a Starting Independent Researcher grant by the ERC under the FP7. M.P. is supported by the Lundbeck Foundation.

References

[1] A. Abrikosov, On the magnetic properties of superconductors of the second type, Soviet Phys. JETP 5 (1957) 1174-1182.
[2] H. Aydi, E. Sandier, Vortex analysis of the periodic Ginzburg-Landau model, Annales de l'Institut Henri Poincaré (C) Non Linear Analysis 26 (4) (2009) 1223-1236.
[3] H.L. Cycon, R.G. Froese, W. Kirsh, B. Simon, Schrödinger Operators, Springer-Verlag, Berlin, 1987.
[4] M. Dutour, Bifurcation vers l'état d'Abrikosov et diagramme des phases, Thèse, Orsay, available online at http://xxx.lanl.gov/abs/mathph/9912011, 1999.
[5] S. Fournais, B. Helffer, Spectral Methods in Surface Superconductivity, Progress in Nonlinear Differential Equations and Their Applications, vol. 77, Birkhäuser, Basel, 2010, in press.
[6] T. Giorgi, R. Smith, Remarks on the existence of global minimizers for the Ginzburg-Landau energy functional, Nonlinear Anal. 53 (2) (2003) 147-155.
[7] Y. Yang, Existence regularity and asymptotic behavior of the solutions of the Ginzburg-Landau equations on \mathbb{R}^{3}, Comm. Math. Phys. 123 (1989) 147-161.
[8] Y. Yang, The existence of Ginzburg-Landau solutions on the plane by a direct variational method, Annales de l'Institut Henri Poincaré (C) Non Linear Analysis 11 (5) (1994) 517-536.

[^0]: E-mail addresses: akachmar@imf.au.dk (A. Kachmar), mickep@imf.au.dk (M. Persson).

