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Abstract

We consider the stationary Ginzburg—Landau equations in R4, d =2, 3. We exhibit a class of applied magnetic fields (including
constant fields) such that the Ginzburg-Landau equations do not admit finite energy solutions. 7o cite this article: A. Kachmar,
M. Persson, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un résultat de non-existence pour les équations de Ginzburg-Landau. Nous considérons les équations de Ginzburg—Landau
dans R?, d = 2,3. Nous exhibons une classe de champs magnétiques appliqués telle que les équations de Ginzburg—Landau
n’admettent pas de solution d’énergie finie. Pour citer cet article : A. Kachmar, M. Persson, C. R. Acad. Sci. Paris, Ser. I 347
(2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The aim of the present note is to study the Ginzburg-Landau system of equations in R?,

{—(v—mw =1 -y,

AN 1
—Vi(curl A — H) =Imy (¥ — i A)y). ()

Here ¢ € Hl%)c (R?; C) is the complex order parameter, A € HILC (R?; R?) is the magnetic vector potential, curl A is
the induced magnetic field

B =curl A =0y, Ay — 0y, A1, )

H e LIZOC(RZ) is the applied magnetic field, and V+ = (—0x,, 0x,) is the Hodge gradient.

Solutions of (1) are of particular interest in the physics literature as they do include periodic solutions with vortices
distributed in a uniform lattice, named as Abrikosov’s solution. We refer the reader to [1] for the physical motivation
and to [2,4] for mathematical results in that direction.
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Egs. (1) are formally the Euler-Lagrange equations of the following Ginzburg—Landau energy,

: 2 1 2
G, A) = /<|(v —iA)y| +§(1 —¥?)" +lcurl A — H|2) dx. 3)
R2
A solution (¥, A) of (1) is said to have finite energy if G(1/, A) < co. When the applied magnetic field H € L?(R?),
it is proved in [6,8] that the system (1) admits finite energy solutions. In the present note, we would like to discuss the
optimality of the hypothesis H € L?(R?) thereby establishing negative results when this hypothesis is violated.

Our result is that if H is not allowed to decay fast at infinity (especially if it is constant), then there are no finite
energy solutions to (1):

Theorem 1. Let o < 1. Assume that the applied magnetic field H € LIZOC(Rz) and that there exist constants Ry > 0

and h > 0 such that H (x) > # for all x with |x| > Rg. Then the Ginzburg—Landau system (1) does not admit finite
energy solutions.

Remark 2. We note that 7 € L2(R2\ B(0, 1)) if and only if o > 1, which means that the result in Theorem 1 is

X[
really complementary to the results in [6,8].

Remark 3. The same non-existing result still holds if we instead impose the following properties on H: (1) H ¢
L2(R?), (2) there exists Ro > 0 such that for H(x) is positive for |x| > Ry, and (3) there exists R; > 0 such that the
reverse Holder-inequality

1/2
/ H(x)dx>|B(0,R)|”2< / H(x)2dx) )

B(0,R) B(0,R)

holds for all R > R;. The proof follows the proof of Theorem 1 until the end, where the alternative properties of H
are used.

We conclude by mentioning an immediate generalization to the 3-dimensional equations. Let H = (H;, H>, H3) €
leoc (R3; R?) be a given vector field. Consider the Ginzburg-Landau equations in R3,

{—(v —iA*Y ==y,
—curl(curl A — H) =Im(y(V —iA)).

A solution (¥, A) € H!_(R3; C) x H] (R3; R®) is said to have finite energy if (1, A) = [ps (|(V —i A)y[> + $(1 —
[¥|%)% 4 | curl A — H|?) dx < co. We have then a similar result to Theorem 1.

®)

Theorem 4. Let o < % Assume that there exist h > 0 and Ry > 0 such that the applied magnetic field H =
(H{, Hy, H3) € LIZOC(R3; R3) satisfies, Hz(x) > #Vx such that |x| = Ro. Then the Ginzburg—Landau system (5)
does not admit finite energy solutions.

Remark 5. Remark 3 carries over to three dimensions, but with any component H; in place of H.

The proof of Theorem 4 is exactly the same as that of Theorem 1. So, we will give details only for the proof of
Theorem 1. The essential key for proving Theorem 1 is a result from the spectral theory of magnetic Schrodinger
operators stated in Lemma 7 below.

2. Two auxiliary lemmas
We start with the following observation concerning the Ginzburg—Landau system (1):

Lemma 6. Assume that H € L (R2). Let (¥, A) be a weak solution of (1) such that G(, A) < 0o. Then || < 1

loc
in R2.
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Proof. This result was proved by Yang [7, Lemma 3.1] for R? under the assumption H € L*(R?). The assumption
on H is not used in Yang’s proof but the proof only relies on the fact that the energy of (¢, A) is finite. The proof of
this lemma is line-by-line the same as [7], but with R? in place of R3. O

A key-ingredient is the following result from the spectral theory of magnetic Schrodinger operators.
Let x be a cut-off function such that 0 < x < 1, x = 1in [0, %] and x =0in [1, c0). For all R > 0, we introduce
the function,

Xr(x) = X(%), Vx € R2. (6)

Lemma 7. There exists a constant C > 0 such that, for all v € H'(R*; C), A € Hl%)c (R?; R?) and R > 0, the following
inequality holds,

) 2 1 C 2
—inwlPazs [ Bwberfa-g [ el
B(O,R) B(0,R) B(0.R)\B(0.R/2)

Here B = curl A and xr the function from (6).
Proof. We write,

) 2 . 2 1 . 2
f|(V—zA>w\ dr > / xR (¥~ i x> / IV — i A) ) [P dx — / WV xx 2 dx.
B(O,R) B(O,R) B(O,R) B(O,R)

To finish the proof, we just use the following well known inequality (see [3] or [5, Lemma 2.4.1]),

/|(v—iA)¢}2dx>i / B(x)|p*dx, V¢ e Hj(B(0, R)). O

B(O,R) B(0,R)
3. Proof of Theorem 1

Assume that (, A) is a finite energy solution of (1). Thanks to Lemma 6 we have |¢| < 1 in RZ.
Recalling the hypothesis on the applied magnetic field H that we assumed in Theorem 1, we may pick Ry > 0 such
that

h
H(x) 2 —, Vx| = Ro. )

x|

Applying Lemma 7, with (i, A) as above, a solution of (1), we obtain with B = curl A,

. 2 1 C
/|(V—1A)w| dr > 5 / B(x)|wa|2dx—F / [y dx.
R2 B(0,R) B(0,R)\B(0,R/2)

Let R > 2R and 2 = {x € R?: Ry < |x| < R}. Then we may write,

|(V—iA>w|2dx>1 B(x)|xmp|2cbc+l B(x)bcmmzdx—£ [y dx.
2 2

R2
R2 2R B(0,Ro) B(0,R)\B(0,R/2)
Using that fRz [(V — iA)I//|2 dx <Gy, A),Ae Hléc(Rz) and |xrv¥| < 1, we get a constant Cy depending on Ry such
that,
1
G A= 5 / B x> dx — Co. ®)
2r

So, let us handle the first term in the right-hand side above. We write,
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/B<x>|XRw|2dx=/H(x>|xw|2dx+/(B(x>—H<x))|xm/f|2dx. 9)
2k 2r g

In order to handle the last term on the right of (9), we apply a Cauchy—Schwarz inequality and use the fact that
[xr¥| < 1. In this way we get,

1/2 1/2
’/(B(x)—H(x>)|wa|2dx‘<(/yBu)—H(x)yzdx) (/ dx) < (G, A)) P 192g 12,
r

Q2r 2r

Implementing this bound together with (7) in the right side of (8), we get the following lower bound,

h
/B(x)lwa|2dx>/—|wa|2dx—(g(w, ) 21212, (10)
g

x|
2R

We need only to bound from below | 2% #| xRV |*dx. Actually, using that xg = 1 in B(0, R/2) and a Cauchy—
Schwarz inequality, we obtain,

h ’ h 2 / h / h 2
dx > — dx = —d — —1)dx
qua'“‘”' x /Manm x et [ v
QR

Qr)2 2Rr)2 g2

2mh

oa 2wy 12, ( 27
> 5 ((R/2P7 = Ry™) = (v, A) h(z_m

Now we use the assumption that G(y, A) < oo. In this way, we get by implementing the right-hand side above
in (10) and then by substituting the resulting lower bound into (8), a constant C such that,

1/2 s
) ((R/z)zfza _ R(2)—2a) 2

2%~ lsh
Gy, A) > %RH—CRH’—CR—C. an
—

Making R — oo and recalling that & < 1, we get a contradiction to the assumption that the energy G (i, A) is finite,
thereby finishing the proof of Theorem 1.
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