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Abstract

We consider the stationary Ginzburg–Landau equations in R
d , d = 2,3. We exhibit a class of applied magnetic fields (including

constant fields) such that the Ginzburg–Landau equations do not admit finite energy solutions. To cite this article: A. Kachmar,
M. Persson, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un résultat de non-existence pour les équations de Ginzburg–Landau. Nous considérons les équations de Ginzburg–Landau
dans R

d , d = 2,3. Nous exhibons une classe de champs magnétiques appliqués telle que les équations de Ginzburg–Landau
n’admettent pas de solution d’énergie finie. Pour citer cet article : A. Kachmar, M. Persson, C. R. Acad. Sci. Paris, Ser. I 347
(2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The aim of the present note is to study the Ginzburg–Landau system of equations in R2,
{−(∇ − iA)2ψ = (1 − |ψ |2)ψ,

−∇⊥(curlA − H) = Im(ψ(∇ − iA)ψ).
(1)

Here ψ ∈ H 1
loc(R

2;C) is the complex order parameter, A ∈ H 1
loc(R

2;R
2) is the magnetic vector potential, curlA is

the induced magnetic field

B = curlA = ∂x1A2 − ∂x2A1, (2)

H ∈ L2
loc(R

2) is the applied magnetic field, and ∇⊥ = (−∂x2 , ∂x1) is the Hodge gradient.
Solutions of (1) are of particular interest in the physics literature as they do include periodic solutions with vortices

distributed in a uniform lattice, named as Abrikosov’s solution. We refer the reader to [1] for the physical motivation
and to [2,4] for mathematical results in that direction.
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Eqs. (1) are formally the Euler–Lagrange equations of the following Ginzburg–Landau energy,

G(ψ,A) =
∫

R2

(∣∣(∇ − iA)ψ
∣∣2+1

2

(
1 − |ψ |2)2 + | curlA − H |2

)
dx. (3)

A solution (ψ,A) of (1) is said to have finite energy if G(ψ,A) < ∞. When the applied magnetic field H ∈ L2(R2),
it is proved in [6,8] that the system (1) admits finite energy solutions. In the present note, we would like to discuss the
optimality of the hypothesis H ∈ L2(R2) thereby establishing negative results when this hypothesis is violated.

Our result is that if H is not allowed to decay fast at infinity (especially if it is constant), then there are no finite
energy solutions to (1):

Theorem 1. Let α < 1. Assume that the applied magnetic field H ∈ L2
loc(R

2) and that there exist constants R0 > 0
and h > 0 such that H(x) � h

|x|α for all x with |x| > R0. Then the Ginzburg–Landau system (1) does not admit finite
energy solutions.

Remark 2. We note that 1
|x|α ∈ L2(R2 \ B(0,1)) if and only if α > 1, which means that the result in Theorem 1 is

really complementary to the results in [6,8].

Remark 3. The same non-existing result still holds if we instead impose the following properties on H : (1) H /∈
L2(R2), (2) there exists R0 > 0 such that for H(x) is positive for |x| > R0, and (3) there exists R1 > 0 such that the
reverse Hölder-inequality

∫
B(0,R)

H(x)dx �
∣∣B(0,R)

∣∣1/2
( ∫

B(0,R)

H(x)2 dx

)1/2

(4)

holds for all R > R1. The proof follows the proof of Theorem 1 until the end, where the alternative properties of H

are used.

We conclude by mentioning an immediate generalization to the 3-dimensional equations. Let H = (H1,H2,H3) ∈
L2

loc(R
3;R3) be a given vector field. Consider the Ginzburg–Landau equations in R3,

{−(∇ − iA)2ψ = (1 − |ψ |2)ψ,

− curl(curlA − H) = Im(ψ(∇ − iA)ψ).
(5)

A solution (ψ,A) ∈ H 1
loc(R

3;C)×H 1
loc(R

3;R3) is said to have finite energy if E (ψ,A) = ∫
R3(|(∇ − iA)ψ |2 + 1

2 (1 −
|ψ |2)2 + | curlA − H |2)dx < ∞. We have then a similar result to Theorem 1.

Theorem 4. Let α < 3
2 . Assume that there exist h > 0 and R0 > 0 such that the applied magnetic field H =

(H1,H2,H3) ∈ L2
loc(R

3;R
3) satisfies, H3(x) � h

|x|α ∀x such that |x| � R0. Then the Ginzburg–Landau system (5)
does not admit finite energy solutions.

Remark 5. Remark 3 carries over to three dimensions, but with any component Hj in place of H .

The proof of Theorem 4 is exactly the same as that of Theorem 1. So, we will give details only for the proof of
Theorem 1. The essential key for proving Theorem 1 is a result from the spectral theory of magnetic Schrödinger
operators stated in Lemma 7 below.

2. Two auxiliary lemmas

We start with the following observation concerning the Ginzburg–Landau system (1):

Lemma 6. Assume that H ∈ L2
loc(R

2). Let (ψ,A) be a weak solution of (1) such that G(ψ,A) < ∞. Then |ψ | � 1
in R

2.
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Proof. This result was proved by Yang [7, Lemma 3.1] for R
3 under the assumption H ∈ L2(R3). The assumption

on H is not used in Yang’s proof but the proof only relies on the fact that the energy of (ψ,A) is finite. The proof of
this lemma is line-by-line the same as [7], but with R

2 in place of R
3. �

A key-ingredient is the following result from the spectral theory of magnetic Schrödinger operators.
Let χ be a cut-off function such that 0 � χ � 1, χ = 1 in [0, 1

2 ] and χ = 0 in [1,∞). For all R > 0, we introduce
the function,

χR(x) = χ

( |x|
R

)
, ∀x ∈ R

2. (6)

Lemma 7. There exists a constant C > 0 such that, for all ψ ∈ H 1(R2;C), A ∈ H 1
loc(R

2;R
2) and R > 0, the following

inequality holds,∫
B(0,R)

∣∣(∇ − iA)ψ
∣∣2 dx � 1

2

∫
B(0,R)

B(x)|χRψ |2 dx − C

R2

∫
B(0,R)\B(0,R/2)

∣∣ψ(x)
∣∣2 dx.

Here B = curlA and χR the function from (6).

Proof. We write,∫
B(0,R)

∣∣(∇ − iA)ψ
∣∣2 dx �

∫
B(0,R)

∣∣χR(∇ − iA)ψ
∣∣2 dx � 1

2

∫
B(0,R)

∣∣(∇ − iA)(χRψ)
∣∣2 dx −

∫
B(0,R)

|ψ∇χR|2 dx.

To finish the proof, we just use the following well known inequality (see [3] or [5, Lemma 2.4.1]),∫
B(0,R)

∣∣(∇ − iA)φ
∣∣2 dx � ±

∫
B(0,R)

B(x)|φ|2 dx, ∀φ ∈ H 1
0

(
B(0,R)

)
. �

3. Proof of Theorem 1

Assume that (ψ,A) is a finite energy solution of (1). Thanks to Lemma 6 we have |ψ | � 1 in R2.
Recalling the hypothesis on the applied magnetic field H that we assumed in Theorem 1, we may pick R0 > 0 such

that

H(x) � h

|x|α , ∀|x| � R0. (7)

Applying Lemma 7, with (ψ,A) as above, a solution of (1), we obtain with B = curlA,∫

R2

∣∣(∇ − iA)ψ
∣∣2 dx � 1

2

∫
B(0,R)

B(x)|χRψ |2 dx − C

R2

∫
B(0,R)\B(0,R/2)

|ψ |2 dx.

Let R > 2R0 and ΩR = {x ∈ R
2: R0 < |x| < R}. Then we may write,∫

R2

∣∣(∇ − iA)ψ
∣∣2 dx � 1

2

∫
ΩR

B(x)|χRψ |2 dx + 1

2

∫
B(0,R0)

B(x)|χRψ |2 dx − C

R2

∫
B(0,R)\B(0,R/2)

|ψ |2 dx.

Using that
∫

R2 |(∇ − iA)ψ |2 dx � G(ψ,A), A ∈ H 1
loc(R

2) and |χRψ | � 1, we get a constant C0 depending on R0 such
that,

G(ψ,A) � 1

2

∫
ΩR

B(x)|χRψ |2 dx − C0. (8)

So, let us handle the first term in the right-hand side above. We write,
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∫
ΩR

B(x)|χRψ |2 dx =
∫

ΩR

H(x)|χRψ |2 dx +
∫

ΩR

(
B(x) − H(x)

)|χRψ |2 dx. (9)

In order to handle the last term on the right of (9), we apply a Cauchy–Schwarz inequality and use the fact that
|χRψ | � 1. In this way we get,

∣∣∣∣
∫

ΩR

(
B(x) − H(x)

)|χRψ |2 dx

∣∣∣∣ �
( ∫

ΩR

∣∣B(x) − H(x)
∣∣2 dx

)1/2( ∫
ΩR

dx

)1/2

�
(

G(ψ,A)
)1/2|ΩR|1/2.

Implementing this bound together with (7) in the right side of (8), we get the following lower bound,∫
ΩR

B(x)|χRψ |2 dx �
∫

ΩR

h

|x|α |χRψ |2 dx − (
G(ψ,A)

)1/2|ΩR|1/2. (10)

We need only to bound from below
∫
ΩR

h
|x|α |χRψ |2 dx. Actually, using that χR = 1 in B(0,R/2) and a Cauchy–

Schwarz inequality, we obtain,∫
ΩR

h

|x|α |χRψ |2 dx �
∫

ΩR/2

h

|x|α |ψ |2 dx =
∫

ΩR/2

h

|x|α dx +
∫

ΩR/2

h

|x|α
(|ψ |2 − 1

)
dx

� 2πh

2 − α

(
(R/2)2−α − R2−α

0

) − (
G(ψ,A)

)1/2
h

(
2π

2 − 2α

)1/2(
(R/2)2−2α − R2−2α

0

)1/2
.

Now we use the assumption that G(ψ,A) < ∞. In this way, we get by implementing the right-hand side above
in (10) and then by substituting the resulting lower bound into (8), a constant C such that,

G(ψ,A) � 2α−1πh

2 − α
R2−α − CR1−α − CR − C. (11)

Making R → ∞ and recalling that α < 1, we get a contradiction to the assumption that the energy G(ψ,A) is finite,
thereby finishing the proof of Theorem 1.
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