
C. R. Acad. Sci. Paris, Ser. I 347 (2009) 1385–1388

Harmonic Analysis

Norm inequalities for convolution operators

Erlan Nursultanov a, Sergey Tikhonov b, Nazerke Tleukhanova c

a Kazakh Branch of Moscow State University, Munatpasova, 7, 010010 Astana, Kazakhstan
b ICREA and Centre de Recerca Matemàtica, Apartat 50, 08193 Bellaterra, Barcelona, Spain

c Gumilyov Eurasian National University, Munatpasova, 5, 010008 Astana, Kazakhstan

Received 20 September 2009; accepted after revision 6 October 2009

Available online 29 October 2009

Presented by Jean-Pierre Kahane

Abstract

We study norm convolution inequalities in Lebesgue and Lorentz spaces. First, we improve the well-known O’Neil’s inequality
for the convolution operators and prove corresponding estimate from below. Second, we obtain Young–O’Neil-type estimate in the
Lorentz spaces for the limit value parameters, i.e., ‖K ∗ f ‖L(p,h1)→L(p,h2). Finally, similar estimates in the weighted Lorentz
spaces are presented. To cite this article: E. Nursultanov et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Inégalités de normes pour les opérateurs de convolution. Nous étudions des inégalités de normes de convolutions dans les
espaces de Lebesgue et de Lorentz. En premier lieu, nous améliorons l’inégalité bien connue de O’Neil sur les opérateurs de
convolution et nous établissons une minoration. En second lieu, nous donnons une estimation du type de Young–O’Neil dans
les espaces de Lorentz, à savoir ‖K ∗ f ‖L(p,h1)→L(p,h2). Enfin, nous présentons des estimations similaires dans les espaces de
Lorentz à poids. Pour citer cet article : E. Nursultanov et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let (Ω,μ) be a measurable space and Lp(Ω,μ) be the collection of all those measurable functions f satisfying
‖f ‖Lp(Ω,μ) = (

∫
Ω

|f (x)|p dμ)1/p < ∞. The distribution of a measurable function f on Ω is defined by m(σ,f ) =
μ{x ∈ Ω: |f (x)| > σ }. Then f ∗(t) = inf{σ : m(σ,f ) � t} is the decreasing rearrangement of f .

Let 0 < p < ∞ and 0 < q � ∞. The Lorentz space Lp,q(Ω,μ) is defined [3, Ch. 4] by those measurable func-
tions f such that

‖f ‖Lp,q =
( ∞∫

0

(
t1/pf ∗(t)

)q dt

t

)1/q

< ∞,
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when 0 < q < ∞, and ‖f ‖Lp,∞ = supt t
1/pf ∗(t) < ∞, when q = ∞. We also define f ∗∗(x) = 1

x

∫ x

0 f ∗(t)dt.

Let D and Ω be measurable sets in Rn and K(·) be locally integrable function on D −Ω = {x −y: x ∈ D,y ∈ Ω}.
In this paper we study norm estimates for the convolution operator

(Af )(y) = (K ∗ f )(y) =
∫
D

K(x − y)f (x)dx, y ∈ Ω (1)

in the Lebesgue and Lorentz spaces.
In Section 2 we consider the upper and lower estimates of ‖A‖Lp→Lq . The upper estimate sharpens the known

O’Neil and Stepanov inequalities. Section 3 is devoted to the O’Neil type inequalities in the Lorentz spaces. We
study the case of limit value parameters, that is, ‖A‖Lp,h1→Lp,h2

for 1 � p � ∞. Finally, in Section 4 we give norm
convolution estimates in the more general Lorentz spaces. Detailed proof of these results can be found in [9–11].

2. Norm convolution inequalities in the Lebesgue spaces

The Young convolution inequality of the form ‖K ∗f ‖Lq � ‖f ‖Lp ‖K‖Lr , 1 + 1
q

= 1
p

+ 1
r

plays a very important
role both in Harmonic Analysis and PDE.

O’Neil [12] extended Young’s inequality as follows. Let μ be the linear Lebesgue measure and Lp(R) =
Lp,p(R,dx). Then (1 < p,q, r < ∞)

‖A‖Lp(R,dx)→Lq(R,dx) � C‖K‖Lr,∞(R,dx), (2)

where A is given by (1) with Ω = D = R.
Another extension of Young’s inequality was proved by Stepanov [13] using the Wiener amalgam space

W(Lr,∞[0,1], lr,∞(Z)) (see e.g. [6]): for 1 < p < q < +∞ and 1/r = 1 − 1/p + 1/q one has

‖A‖Lp→Lq � C‖K‖W(Lr,∞[0,1],lr,∞(Z)), (3)

where ‖K‖W(Lr,∞[0,1], lr,∞(Z)) := ‖‖K̃‖Lr,∞[0,1]‖lr,∞(Z) := supn∈N n1/r ( sup0�t�1 t1/r K̃∗(t, ·))∗n, and K̃(x,m) :=
K(m + x), m ∈ Z, x ∈ [0,1]. In [13] it was also shown that inequalities (2) and (3) are not comparable.

In this section we sharpen O’Neil and Stepanov inequalities (2) and (3) and give an estimate of ‖A‖ from below.
We will need the following definitions. Let I be an interval with |I | = d . Then TI = {I + kd}k∈Z is a partition of R,
i.e., R = ⋃

k∈Z
(I + kd). We define two collections of sets L(I ) ⊂ U(I ):

L(I ) =
{

e: e =
m⋃

k=1

([a, b] + kd
)
, [a, b] ⊆ I, m ∈ N

}

and

U(I ) =
{

e: e =
m⋃

k=1

ωk, m ∈ N

}
,

where {ωk}m1 is any collection of compact sets of equal measure |ωk| � d and such that each ωk belongs to a different
element of TI .

Theorem 1. Let 1 < p < q < ∞. Then for Af = K ∗ f we have

C1 sup
I

sup
e∈L(I )

1

|e|1/p−1/q

∣∣∣∣
∫
e

K(x)dx

∣∣∣∣ � ‖A‖Lp→Lq � C2 inf
I

sup
e∈U(I )

1

|e|1/p−1/q

∣∣∣∣
∫
e

K(x)dx

∣∣∣∣, (4)

where the constants C1 and C2 depend only on p and q .

For the certain regular kernels K , for instance, monotone or quasi-monotone, the upper and lower bounds in (4)
coincide, that is, we get the equivalent relation for ‖A‖Lp→Lq .
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Corollary 1. Let 1 < p < q < ∞ and K satisfy the following condition:

∣∣K(x)
∣∣ � C

∣∣∣∣∣ 1

x

x∫
0

K(t)dt

∣∣∣∣∣, x ∈ R�{0}.

Then a necessary and sufficient condition for Af = K ∗ f to be bounded from Lp(R) to Lq(R) is

S := sup
|x|>0

1

|x|1/p−1/q

∣∣∣∣∣
x∫

0

K(y)dy

∣∣∣∣∣ < ∞.

Moreover, ‖A‖Lp→Lq ≈ S.

Compared with O’Neil and Stepanov’s estimates, we prove in [11] that the right-hand side estimate of (4) implies
both (2) and (3). It can also be shown that for the function

K(x) =

⎧⎪⎨
⎪⎩

2k/r , for x ∈ [−k,−k + 2−k], k ∈ N;
1, for x ∈ [k, k + 1/k), k ∈ N;
0, otherwise

we have infI supe∈U(I )
1

|e|1/p−1/q | ∫
e
K(x)dx| < ∞, ‖K‖Lr,∞(R,dx) = ∞, ‖K‖W(Lr,∞[0,1], lr,∞(Z)) = ∞.

3. Young–O’Neil type inequalities in the Lorentz spaces

The Young–O’Neil inequality for the convolution Af = K ∗ f in the Lorentz spaces is given by ‖Af ‖Lq,h1
�

C‖f ‖Lp,h2
‖K‖Lr,h

, where 1 < p,q, r < ∞, 0 < h1, h2, h � ∞, 1 + 1
q

= 1
p

+ 1
r
, and 1

h
= 1

h1
− 1

h2
. See O’Neil [12],

Hunt [7], Yap [14], and Blozinski [4].
In this section we study the boundedness of the operator A from Lp,h2 into Lp,h1 , i.e., the limiting case of the

Young–O’Neil inequality (p = q and r = 1). First we note (see [5, Theorem 2]) that if h1 < h2 � ∞ and K � 0, then
A : Lp,h2(R,dx) → Lp,h1(R,dx) implies A ≡ 0, i.e., K

a.e.= 0. We however show that in the case when Ω is of finite
measure, the same problem has a nontrivial solution.

Next two theorems provide the boundedness of the convolution A, given by (1) with the 1-periodic functions K

and f and Ω = D = [0,1], from Lp,h1([0,1],dx) in Lp,h2([0,1],dx).

Theorem 2. Let 1 � h1, h2 � ∞, and 1
h

= 1
h1

− 1
h2

. We have

‖Af ‖Lp,h1 [0,1] � C‖f ‖Lp,h2 [0,1]
∥∥K∗∗∥∥

L1,h[0,1] (5)

for 1 < p � ∞ and∥∥(Af )∗∗∥∥
L1,h1 [0,1] � C

∥∥f ∗∗∥∥
L1,h2 [0,1]

∥∥K∗∗∥∥
L1,h[0,1], (6)

where ‖ϕ∗∗‖L1,h[0,1] ≡ (
∫ 1

0 (tϕ∗∗(t))h dt
t
)1/h.

Remark. In both inequalities (5) and (6), the factor ‖K∗∗‖L1,h
cannot be changed to ‖K‖L1,h

.

Our second goal is to give an analogue of Young–O’Neil’s inequality in the L∞,q [0,1] spaces. Following Bennett
et al. [2] (see also [1]), we define L∞,q [0,1] as follows

L∞,q [0,1] =
{

f ∈ L1[0,1]: ‖f ‖L∞,q [0,1] := ‖f ‖L1[0,1] +
( 1∫

0

(f ∗∗ − f ∗)q

t
dt

)1/q

< ∞
}

.

Note that L∞[0,1] = L∞,1[0,1] ↪→ L∞,q [0,1] ↪→ L∞,q1 [0,1] ↪→ Lp[0,1], for 1 � p < ∞ and 1 � q < q1 � ∞.

Theorem 3. Let 1 � h1, h2, h < ∞ and 1
h

= 1
h1

− 1
h2

. We have ‖Af ‖L∞,h1 [0,1] � 2‖f ‖L∞,h2 [0,1]‖K∗∗‖L1,h[0,1].
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4. Convolution operator in the Lorentz spaces with weights

In the case of non-homogeneous measures, the convolution operator does not satisfy all requirements from [12]
and needs thorough investigation. The following theorem provides sufficient conditions for the convolution operator
to be bounded in the weighted Lorentz space.

Theorem 4. Let 1 < p,q < ∞ and let the measures μ and ν be defined on measurable subsets Ω and D of Rn,
respectively. Assume that a function K(z) defined on D − Ω = {z = x − y: x ∈ D,y ∈ Ω} satisfies the following
condition: there exists γ > 0 such that

sup
e∈M1

1

(μ(e))1/q ′−1/γp′

∣∣∣∣
∫
e

K(x − y)dμy

∣∣∣∣ � B for a.e. x ∈ D,

sup
w∈M2

1

(ν(w))1/p−γ /q

∣∣∣∣
∫
w

K(x − y)dνx

∣∣∣∣ � B for a.e. y ∈ Ω,

where M1 = {e ⊂ Ω: 0 < μ(e) < ∞} and M2 = {w ⊂ D: 0 < ν(w) < ∞}. Then

Af (y) =
∫
D

K(x − y)f (x)dνx (7)

is bounded from Lp,h1(D,ν) to Lq,h2(Ω,μ) with 1 � h1 � h2 � ∞ and, moreover, ‖A‖Lp,h1 (D,ν)→Lq,h2 (Ω,μ) � CB,

where C = C(p,q,h1, h2).

For the power weights the Young–O’Neil inequality was generalized by Kerman [8]. We continue this investigation
by presenting the following result.

Theorem 5. Let α,β ∈ [0,1), 1 < p,q < ∞, and 0 < 1
r

= 1 − 1−α
p′ − 1−β

q
. Suppose that measures μ and ν

are define as follows μ(e) = ∫
e

dy

|y|β and ν(ω) = ∫
ω

dx
|x|α . Then the convolution operator (7) with D = R satisfies

‖A‖Lp(R,ν)→Lq(R,μ) � C sup0<|e|<∞ 1

|e| 1
r

| ∫
e
K(t)dt |, where |e| is the linear measure of e. Moreover, if the kernel

K(t) is non-negative, then C supd>0
1

d
1
r

∫ d

−d
K(t)dt � ‖A‖Lp(R,ν)→Lq(R,μ).
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