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Abstract

We describe the primitive cohomology lattice of a smooth even-dimensional complete intersection in projective space. To cite
this article: A. Beauville, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La cohomologie primitive d’une intersection complète. Nous décrivons le réseau de cohomologie primitive d’une intersection
complète lisse de dimension paire dans l’espace projectif. Pour citer cet article : A. Beauville, C. R. Acad. Sci. Paris, Ser. I 347
(2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let X be a smooth complete intersection of degree d and even dimension n in projective space. We describe in this
note the lattice structure of the primitive cohomology Hn(X,Z)o. Excluding the cubic surface and the intersection of
two quadrics, we find

Hn(X,Z)o = Ad−1
⊥⊕ pE8(±1)

⊥⊕ qU or 〈−d〉 ⊥⊕ p′E8(±1)
⊥⊕ q ′U

where the numbers p, q , p′, q ′ and the sign attributed to E8 depend on the multidegree and dimension of X — see
Theorem 4 for a precise statement. The proof is an easy consequence of classical facts on unimodular lattices together
with the Hirzebruch formula for the Hodge numbers of X.

We warn the reader that there are many ways to write an indefinite lattice as an orthogonal sum of indecomposable
ones; for instance, when 8|d , both decompositions above hold. Still it might be useful to have a (semi-) uniform
expression for this lattice. Related results, with a different point of view, appear in [3].
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2. Unimodular lattices

As usual we denote by U the rank 2 hyperbolic lattice, and by 〈d〉 the lattice Ze with e2 = d . If L is a lattice,
L(−1) denotes the Z-module L with the form x �→ −x2; if n is a negative number, we put nL := |n|L(−1).

Let L be an odd unimodular lattice. A primitive vector h ∈ L is said to be characteristic if h · x ≡ x2 (mod. 2) for
all x ∈ L; this is equivalent to saying that the orthogonal lattice h⊥ is even [3, Lemma 3.3].

Proposition 1. Let L be a unimodular lattice, of signature (b+, b−), with b+, b− � 2; let h be a primitive vector in L

of square d > 0, such that h⊥ is even. Put s := b+ − b−, t = min (b+, b−), u = min (b−, b+ − d).

1) If L is even or 8|d we have h⊥ = 〈−d〉 ⊥⊕ s
8E8

⊥⊕ (t − 1)U .

2) If L is odd and d � b+, we have h⊥ = Ad−1
⊥⊕ s−d

8 E8
⊥⊕ uU .

Proof. A classical result of Wall [6] tells us that h is equivalent under O(L) to any primitive vector v of square d ,
provided v is characteristic if so is h. If L is even, we choose a hyperbolic plane U ⊂ L with a hyperbolic basis (e, f ),

and we put v = e + d
2 f ; then v⊥ = Z(e − d

2 f )
⊥⊕ U⊥, and U⊥ is an indefinite unimodular lattice, hence of the form

pE8(±1)
⊥⊕ qU . Computing b+ and b− we find the above expressions for p and q .

Consider now the case when L is odd. We first observe that since h is characteristic, we have d = h2 ≡ s (mod. 8)
[5, V, Theorem 2]. Let

L′ :=
( ⊥⊕

i�d
Zei

) ⊥⊕ s − d

8
E8

⊥⊕ uU with e2
1 = · · · = e2

d = 1.

L′ is odd, indefinite and has the same signature as L, hence is isometric to L. We put v = e1 +· · ·+ed . The orthogonal

of v in
⊥⊕ Zei is the root lattice Ad−1. By Wall’s theorem h⊥ is isometric to v⊥ = Ad−1

⊥⊕ s−d
8 E8

⊥⊕ uU .

Suppose moreover that 8 divides d , so that 8|s. Then L is isomorphic to Ze
⊥⊕ Zf

⊥⊕ s
8E8

⊥⊕ (t − 1)U , with
e2 = 1, f 2 = −1. Taking v = ( d

4 + 1)e + ( d
4 − 1)f gives the result. �

Remark. Since the signature of h⊥ is (b+ −1, b−), the condition d � b+ is necessary in order that h⊥ contains Ad−1.

3. Complete intersections

We will check that the hypotheses of the proposition hold for the cohomology of complete intersections; the only
non-trivial point is the inequality d � b+.

We will use the notations of [1]. Let d = (d1, . . . , dc) be a sequence of positive integers. We denote by Vn(d) a
smooth complete intersection of multidegree d in Pn+c . We put

hp,q(d) = dimHp,q
(
Vp+q(d)

)
and h

p,q
o (d) = hp,q(d) − δp,q .

Lemma 2. hp+1,q+1(d) � hp,q(d).

Proof. Following [1] we introduce the formal generating series

H(d) =
∑

p,q�0

h
p,q
o (d)ypzq ∈ Z�y, z�;

we define a partial order on Z�y, z� by writing P � Q if P − Q has non-negative coefficients. The assertion of the
lemma is equivalent to H(d) � yzH(d). The set P of formal series in Z�y, z� with this property is stable under
addition and multiplication by any P � 0 in Z�y, z�. The formula
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H(d1, . . . , dc) =
∑

P⊂[1,d]
P �=∅

[
(1 + y)(1 + z)

]|P |−1 ∏
i∈P

H(di)

[1, Corollary 2.4(ii)] shows that it is enough to prove that H(d) is in P .
By [1, Corollary 2.4(i)], we have H(d) = P

1−Q
with

P(y, z) =
∑

i,j�0

(
d − 1

i + j + 1

)
yizj and Q(y, z) =

∑
i,j�1

(
d

i + j

)
yizj .

Since Q � yz, we get 1−yz
1−Q

= 1 + Q−yz
1−Q

� 0, hence (1 − yz)H � 0. �
Lemma 3. Let d = d1 · · ·dc. We have:

a) hp,p(d) � d ;
b) 2hp+1,p−1(d) + 1 � d , except in the following cases:

• d = (2), (2,2);
• p = 1, d = (3), (4), (2,3), (2,2,2), (2,2,2,2);
• p = 2, d = (2,2,2).

Proof. We first prove b) in the case p = 1. Then V2(d) is a surface S ⊂ Pc+2. The canonical bundle KS is OS(e),
with e := d1 + · · ·dc − c − 3; therefore K2

S = e2d . The cases with e � 0 are excluded, so we assume e � 1. Then the
index K2

S − 8χ(OS) of the intersection form is negative [4]; if e � 2, we get χ(OS) > d
2 , hence 2h2,0(d) + 1 � d .

If e = 1, we have KS = OS(1) hence pg = c + 3. The possibilities for d are (5), (2,4), (3,3) and (2,2,3); we have
2(c + 3) + 1 � d in each case.

Since the index is negative, we have h1,1(d) > 2h2,0(d) + 1; this implies that a) holds (for p = 1) except perhaps
for d = (3), (2,2), (4), (2,3), (2,2,2). But the corresponding h1,1 is 7,6,20,20,20, which is always > d .

Now assume p � 2. a) follows from the previous case and Lemma 2; similarly it suffices to check b) for the values
of d excluded in the case p = 1. Using the above formulas we find

h3,1(3) = 1, h3,1(4) = 21, h3,1(2,3) = 8, h3,1(2,2,2,2) = 27, h4,2(2,2,2) = 6,

so that 2hp+1,p−1(d) + 1 � d for p � 2 in the three first cases and for p � 3 in the last one. �
Theorem 4. Let X be a smooth even-dimensional complete intersection in Pn+c , of multidegree d = (d1, . . . , dc). Let
d := d1 · · ·dc be the degree of X, and let e be the number of integers di which are even.

Let (b+, b−) be the signature of the intersection form on Hn(X,Z); we put

s = b+ − b−, t = min (b+, b−), u = min (b+ − d, b−).

We assume d �= (2,2) and d �= (3), (2,2,2,2) when n = 2. Then:

• Hn(X,Z)o = 〈−d〉 ⊥⊕ s
8E8

⊥⊕ (t − 1)U if
( n

2 +e
e

)
is even;

• Hn(X,Z)o = Ad−1
⊥⊕ s−d

8 E8
⊥⊕ uU if

( n
2 +e
e

)
is odd.

For a hypersurface, for instance, we find a lattice of the form Ad−1
⊥⊕ pE8

⊥⊕ qU except if d is even and n ≡ 2
(mod. 4).

Proof. We apply Proposition 1 with L = Hn(X,Z). We take for h the class of a linear section of codimension n
2 , so

that h2 = d .
By [3, Theorem 2.1 and Corollary 2.2], we know that

• h is primitive;
• h⊥ is even;
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• L is even or odd according to the parity of
( n

2 +e
e

)
.

To apply the proposition we only need the inequalities b+ � d and b− � 2. Note that the statement of the theorem
holds trivially for d = (2), so we may assume d � 3. Let us write n = 4k + 2ε, with ε ∈ {0,1}. By Hodge theory we
have

b+ =
∑

p+q=n
p even

hp,q + ε, b− =
∑

p+q=n
p odd

hp,q − ε;

when the inequalities a) and b) of Lemma 3 hold this implies b+ � d and b− � 2, so Proposition 1 gives the result.
In the remaining cases p = 1, d = (3), (2,3), (2,2,2) and p = 2, d = (2,2,2), the lattice L is even and we have

b+, b− � 2, so Proposition 1 still applies. �
Remark. The two first exceptions mentioned in the theorem are well-known [2, Proposition 5.2]: we have
H 2(X,Z)o = E6 for a cubic surface, and Hn(X,Z)o = Dn+3 for a n-dimensional intersection of two quadrics. For an
intersection of 4 quadrics in P6, we have d = 16, hence by Proposition 1

H 2(X,Z)o = 〈−16〉 ⊥⊕ 6E8(−1)
⊥⊕ 15U.
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