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Abstract

In Connes (Non Commutative Geometry, 1994, II.5), a proof is given of the Atiyah–Singer index theorem for closed manifolds
by using deformation groupoids and appropriate actions of these on R

N . Following these ideas, we prove an index theorem for
manifolds with boundary. To cite this article: P. Carrillo-Rouse, B. Monthubert, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un théorème d’indice pour des variétés à bord. Dans le livre Non Commutative Geometry, 1994, II.5, Connes donne une
preuve du théorème de l’indice d’Atiyah–Singer pour des variétés fermées en utilisant des groupoïdes de déformation et des
actions appropriées de ceux-ci dans R

N . Nous suivons ces idées pour montrer un théorème d’indice pour des variétés à bord. Pour
citer cet article : P. Carrillo-Rouse, B. Monthubert, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Dans [2, II.5], Alain Connes donna une preuve du théoréme d’Atiyah–Singer pour une variété fermée entiérement
fondée sur l’utilisation de groupoïdes, grâce à une action du groupoïde tangent de la variété sur R

N . L’idée centrale
est de remplacer des groupoïdes qui ne sont pas (Morita) équivalents à des espaces, par des groupoïdes obtenus par
produit croisé et qui possédent cette propriété, ce qui permet ensuite de donner une formule.

Si X est une variété à bord ∂X, nous construisons le groupoïde TbX := (adG∂X ×R)∪∂ T X en recollant adG∂X ×R

avec T X le long de leur bord commun T ∂X ×R (ici adG∂X = T ∂X ∪ ∂X × ∂X × (0,1) est le groupoïde adiabatique).

Nous le recollons alors avec le groupoïde tangent de l’intérieur de X, TG ◦
X

= T
◦
X ∪ ◦

X × ◦
X ×(0,1] : TGX := TbX ∪0

TG ◦
X

.

Il existe un homomorphisme TGX
h−→ R

N induit par un plongement de X dans R
N−1 × R+, tel que ∂X se plonge

dans R
N−1 × R+ × {0} et

◦
X se plonge dans R

N−1 × R
∗+. Le produit croisé de TGX par h (noté T(GX)h) est un

groupoïde propre dont les groupes d’isotropie sont triviaux, il est donc Morita-équivalent à son espace d’orbites.
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1631-073X/$ – see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2009.10.021
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Soit V (
◦
X) le fibré normal de

◦
X dans R

N , et V (∂X) le fibré normal de ∂X dans R
N−1 ; soit enfin V (X) = V (

◦
X) ∪

V (∂X). En notant D∂ = V (∂X) × {0} � R
N−1 × (0,1) et D◦ = V (

◦
X) × {0} � R

N × (0,1] les déformations au cône
normal, on construit les espaces B∂ := V (X) ∪∂ D∂ et B := B∂ ∪◦ D◦.

Proposition 0.1. Le groupoïde (TGX)h est Morita équivalent à l’espace B.

Soit

indX
f = (e1)∗ ◦ (e0)

−1∗ : K0(TbX) −→ K0( ◦
X × ◦

X
) ≈ Z.

Définition 0.2 (Indice topologique pour une variété à bord). Soit X une variété à bord. L’indice topologique de X est
le morphisme

indX
t : K0(TbX) −→ Z

défini comme la composition des trois morphismes suivants

(i) L’isomorphisme de Connes–Thom CT0 suivi de l’équivalence de Morita M0 :

K0(TbX)
CT0−→ K0((TbX)h0

) M0−→ K0(B∂ ),

oú (TbX)h0 est le produit croisé de TbX par h0 (l’homomorphisme h en t = 0).

(ii) Le morphisme indice de l’espace de déformation B :K0(B∂ ) K0(B)
(e0)∗

≈
(e1)∗

K0(RN) .

(iii) Le morphisme de périodicité de Bott : K0(RN)
Bott−→ Z.

Théorème 0.1. Pour toute variété à bord, on a l’égalité

indX
f = indX

t .

1. Actions of R
NR
N

R
N

All the groupoids considered here will be continuous family groupoids [5,11]. Hence we can consider their
convolution and C∗-algebras without any problem. If G is such a groupoid, we will denote by K0(G) the K-
theory group of its C∗-algebra (unless explicitly written otherwise). This is consistent with the usual notation
when G is a space (a groupoid made only of units). In the sequel, given a smooth manifold N , we will denote by
adGN : T N × {0} � N × N × R

∗ ⇒ N × R, the deformation to normal cone of N in N × N (for complete details
about this deformation functor see [1]). At each time, we will need to restrict it to some interval, e.g. [0,1] gives the
tangent groupoid, and [0,1) gives the adiabatic groupoid.

Let G ⇒ M be a groupoid, as classically, the notation says G is the space of arrows (or morphisms) and M is
the space of units (or objects). Let h : G → R

N be a (smooth or continuous) homomorphism of groupoids (RN

as an additive group). Connes defined the semi-direct product groupoid Gh = G × R
N ⇒ M × R

N ([2], II.5) with
structure maps t (γ,X) = (t (γ ),X), s(γ,X) = (s(γ ),X + h(γ )) and product (γ,X) ◦ (η,X + h(γ )) = (γ ◦ η,X) for
composable arrows.

At the level of C∗-algebras, C∗(Gh) can be seen as the crossed product algebra C∗(G) � R
N where R

N acts on
C∗(G) by automorphisms by the formula: αX(f )(γ ) = ei·(X·h(γ ))f (γ ), ∀f ∈ Cc(G) (see [2], Proposition II.5.7 for

details). In particular, in the case N is even, we have a Connes–Thom isomorphism in K-theory K0(G)
≈→ K0(Gh)

[2, II.C].
Using this groupoid, Connes gives a conceptual, simple proof of the Atiyah–Singer Index theorem for closed

smooth manifolds. Let M be a smooth manifold, GM = M × M its groupoid, and consider the tangent groupoid
TGM . It is well known that the index morphism provided by this deformation groupoid is precisely the analytic index
of Atiyah–Singer [2,9]. In other words, the analytic index of M is the morphism

K0(T M)
(e0)

−1∗
K0

(
TGM

) (e1)∗
K0(M × M) = K0

(
K

(
L2(M)

)) ≈ Z, (1)
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where et are the obvious evaluation algebra morphisms at t . As discussed by Connes, if the groupoids appearing in
this interpretation of the index were equivalent to spaces then we would immediately have a geometric interpretation
of the index. Now, M × M is equivalent to a point (hence to a space), but the other fundamental groupoid playing a
role is not, that is, T M is a groupoid whose fibers are the groups TxM , which are not equivalent (as groupoids) to a
space. The idea of Connes is to use an appropriate action of the tangent groupoid in some R

N in order to translate the
index (via a Thom isomorphism) in an index associated to a deformation groupoid which will be equivalent to some
space.

2. Groupoids and manifolds with boundary

Let X be a manifold with boundary ∂X. We denote, as usual,
◦
X the interior which is a smooth manifold. Let X∂

be the smooth manifold obtained by glueing X with ∂X × [0,1) along their common boundary, ∂X ∼ ∂X × {0}. Set
T X := T X∂ |X , and consider the smooth manifold TbX := (adG∂X × R) ∪∂ T X obtained by glueing adG∂X × R and
T X along their common boundary T ∂X × R (adG∂X = T ∂X ∪ ∂X × ∂X × (0,1) ⇒ ∂X × [0,1) is the adiabatic
groupoid). Now, we have a continuous family groupoid over X∂ : TbX ⇒ X∂ . As a groupoid it is the union of the
groupoids adG∂X × R ⇒ ∂X × [0,1) (where R ⇒ {0} as additive group) and T X ⇒ X. For the topology, it is very
easy to see that all the groupoid structures are compatible with the glueings we considered.

We are going to consider a deformation groupoid TGX [10]. This will be a natural generalisation of the Connes
tangent groupoid of a smooth manifold, to the case with boundary. The space of arrows TGX := TbX ∪◦ TG ◦

X
is

obtained by glueing at T
◦
X (T

◦
X × {0} ⊂ TG ◦

X
is closed). The space of units Xg0 := X∂ ∪◦

◦
X ×[0,1] is obtained by

glueing
◦
X ∼ ◦

X ×{0} (
◦
X ×{0} ⊂ ◦

X ×[0,1] is closed). Using the groupoid structures of TbX ⇒ X∂ and of TG ◦
X

⇒
◦
X

×[0,1], we have a continuous family groupoid TGX ⇒ Xg0 . Again, all the groupoid structures are compatible with
the considered glueings.

To define a homomorphism TGX
h−→ R

N we will need as in the nonboundary case an appropriate embedding. It
is possible to find an embedding i :X ↪→ R

N−1 × R+ such that its restrictions to the interior and to the boundary

are (smooth embeddings) of the following form i◦ :
◦
X ↪→ R

N−1 × R
∗+ and i∂ : ∂X ↪→ R

N−1 × {0}. We define the
homomorphism h : TGX → R

N as follows.

h :

⎧⎪⎪⎨
⎪⎪⎩

h(x,X,0) = dxi◦(X) and h(x, y, ε) = i◦(x)−i◦(y)
ε

on TG ◦
X
,

h(x, ξ,0, λ) = (dxi∂ (ξ), λ) and h(x, y, ε, λ) = (
i∂ (x)−i∂ (y)

ε
, λ) on TG∂X × R,

h(x,X) = dxi◦(X) on T
◦
X .

(2)

Since all these morphisms are compatible with the glueings, one has:

Proposition 2.1. With the formulas defined above, h : TGX → R
N defines a homomorphism of continuous family

groupoids.

The action of TGX on R
N defined by h is free because i is an immersion. It is not necessarily proper (in the case

of Connes [2, II.5] it is since M was supposed closed), however we can prove the following:

Proposition 2.2. The groupoid (TGX)h is a proper groupoid with trivial isotropy groups.

Notice that the groupoid Gh is not the transformation groupoid of a group action (if not, the properness of the
action would be equivalent to the properness of the groupoid). It can be seen however as a transformation groupoid of
a groupoid action. It is very important that the units of the groupoid Gh be the units of G times R

N .
As an immediate consequence of the propositions above, the groupoid (TGX)h is Morita equivalent to its space of

orbits (see [7], Example 5.33). Let us specify this space.
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Let V (
◦
X) be the total space of the normal bundle of

◦
X in R

N . Similarly, let V (∂X) be the total space of the
normal bundle of ∂X in R

N−1. Observe that they have the same fiber vector dimension. In fact, their union V (X) =
V (

◦
X) ∪ V (∂X), is a vector bundle over X, the normal bundle of X in R

N .

Take D∂ = V (∂X) × {0} � R
N−1 × (0,1) the deformation to the normal cone associated to the embedding ∂X

i∂
↪→

R
N−1. We consider the space B∂ := V (X) ∪∂ D∂ glued over their common boundary V (∂X) ∼ V (∂X) × {0}. On

the other hand, take D◦ = V (
◦
X) × {0} � R

N × (0,1] the deformation to the normal cone associated to the embedding
◦
X

i◦
↪→ R

N . We consider the space B := B∂ ∪◦ D◦ glued over V (
◦
X) by the identity map.

Proposition 2.3. The space of orbits of the groupoid (TGX)h is B.

We can give the explicit homeomorphism. The orbit space of (TGX)h is a quotient of Xg0 × R
N . To define a map

Ψ : Xg0 × R
N → B it is enough to define it for each component of Xg0 . Let

Ψ :
{

∂X × (0,1) × R
N−1 × R → R

N−1 × (0,1),

Ψ (a, t, ξ, λ) := (
i∂ (a)

t
+ ξ, t),

{
∂X × {0} × R

N−1 × R → V (∂X),

Ψ (a,0, ξ, λ) := (i∂ (a), ξ),{ ◦
X ×(0,1] × R

N → R
N × (0,1],

Ψ (x, t,X) := (
i◦(x)

t
+ X, t),

{ ◦
X ×{0} × R

N → V (
◦
X),

Ψ (x,0,X) := (i◦(x),X),
(3)

where ξ denotes the class in Va(∂X) := R
N−1/Ti∂ (a)∂X (resp. X denotes the class in Vx(

◦
X) := R

N/Ti◦(x)

◦
X). This

gives a continuous map Ψ :Xg0 × R
N → B that passes to the quotient into a homeomorphism Ψ : (Xg0 × R

N)/∼ →
B, where (Xg0 × R

N)/∼ is the orbit space of the groupoid (TGX)h.
There is an alternative interpretation for B (we thank the referee for this suggestion): take the embedding i : X ↪→

R
N−1 ×R+ and an appropriate tubular neighborhood U in R

N−1 ×R+; then B is diffeomorphic to U ∪R
N−1 ×R

∗+.

3. The index theorem for manifolds with boundary

Deformation groupoids induce index morphisms. The groupoid TGX is naturally parametrized by the closed inter-

val [0,1]. Its algebra comes equipped with evaluations to the algebra of TbX (at t = 0) and to the algebra of
◦
X × ◦

X
(for t �= 0). We have a short exact sequence of C∗-algebras

0 −→ C∗( ◦
X × ◦

X ×(0,1]) −→ C∗(TGX

) −e0−→C∗(TbM) −→ 0 (4)

where the algebra C∗(
◦
X × ◦

X ×(0,1]) is contractible. Hence applying the K-theory functor to this sequence we obtain
an index morphism

indX
f = (e1)∗ ◦ (e0)

−1∗ : K0(TbX) −→ K0(
◦
X × ◦

X) ≈ Z.

The morphism h : TGX → R
N is by definition also parametrized by [0,1], i.e., we have morphisms h0 : TbX →

R
N and ht :

◦
X × ◦

X → R
N , for t �= 0. We can consider the associated groupoids, which satisfy the same properties

as in Proposition 2.2 (in fact, for proving such a proposition it is better to do it for each t , and to check all the
compatibilities).

Definition 3.1 (Topological index morphism for a manifold with boundary). Let X be a manifold with boundary. The
topological index morphism of X is the morphism

indX
t : K0(TbX) −→ Z

defined (using an embedding as above) as the composition of the following three morphisms:

(i) The Connes–Thom isomorphism CT0 followed by the Morita equivalence M0:

K0(TbX)
CT0−→ K0((TbX)h0

) M0−→ K0(B∂ )
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(ii) The index morphism of the deformation space B :K0(B∂ ) K0(B)
(e0)∗

≈
(e1)∗

K0(RN) .

(iii) The usual Bott periodicity morphism: K0(RN)
Bott−→ Z.

Remark 1. The topological index defined above is a natural generalisation of the topological index theorem defined by
Atiyah–Singer. Indeed, in the boundaryless case, they coincide. The index of the deformation space B is quite easy to
understand because we are dealing now with spaces (as groupoids the product is trivial), then the group K0(B) is the
K-theory of the algebra of continuous functions vanishing at infinity C0(B) and the evaluation maps are completely
explicit. In particular, if we identify B∂ with an open subset of R

N (in the natural way), then the morphism (ii) above
correspond to the canonical extension of functions of C0(B∂ ) to C0(R

N).

The following diagram, in which the morphisms CT and M are the Connes–Thom and Morita isomorphisms
respectively, is trivially commutative:

K0(TbX)

≈CT

K0(TGX)

≈CT

e0
≈

e1
K0(

◦
X × ◦

X)

≈CT

K0((TbX)h0)

≈M

K0((TGX)h)

≈M

e0
≈

e1
K0((

◦
X × ◦

X))h1

≈M

K0(B∂ ) K0(B)
e0
≈

e1
K0(RN)

(5)

The left vertical line gives the first part of the topological index map. The bottom line is the morphism induced by
the deformation space B. And the right vertical line is precisely the inverse of the Bott isomorphism Z = K0({pt}) ≈
K0(

◦
X × ◦

X) → K0(RN). Since the top line gives indX
f , we obtain the following result:

Theorem 3.2. For any manifold with boundary X, we have the equality of morphisms

indX
f = indX

t .

The last result is intimately related with the main result of [4]. In fact, if we consider the conic pseudomanifold
naturally associated to X, the noncommutative spaces considered here are the same as the ones considered in [4],
which appeared also in [3]. For instance, TbX is the “Poincaré dual” to the conic pseudomanifold in [3]. In particular
the analytic index of [4] coincide with our indf , and the main results are basically the same. The novelty in this note
is the use of Connes crossed products and the Connes–Thom morphisms instead of the Thom morphisms associated
to deformation groupoids, and hence there is in principle a difference between the topological indices. As in the case
of smooth manifolds, there should be a very closed relation between these two (Thom) approaches which we think is
worth to investigate.

4. Perspectives

As discussed in [3–5,8], the index map indX
f computes the Fredholm index of a fully elliptic operator in the

b-calculus of Melrose. The result proven here might be used to give a formula in relation to that of Atiyah–Patodi–
Singer [6].

We would like to thank Jean-Marie Lescure for very useful comments and discussions. The first author would
like to thank the Max-Planck Institut at Bonn where part of this work was done. We thank also the referee for his
suggestions to improve this note.
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