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Abstract

We compute the numbers g(n,2,2) of nilpotent groups of order n, of class at most 2 generated by at most 2 generators, by giving
an explicit formula for the Dirichlet generating function

∑∞
n=1 g(n,2,2)n−s . To cite this article: C. Voll, C. R. Acad. Sci. Paris,

Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Énumération des groupes nilpotents de classe 2 engendrés par 2 générateurs. On calcule les nombres g(n,2,2) de groupes
nilpotents d’ordre n, de classe au plus 2, engendrés par au plus 2 générateurs, en donnant une formule explicite pour la fonction
génératrice de Dirichlet

∑∞
n=1 g(n,2,2)n−s . Pour citer cet article : C. Voll, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of results

In [1], du Sautoy shows how G. Higman’s PORC-conjecture on the numbers f (n,p) of isomorphism types of
p-groups of order pn can be studied using various Dirichlet generating functions (or zeta functions) associated with
groups. Higman conjectured that the numbers f (n,p) should be ‘polynomial on residue classes’, i.e. that for all n

there should exist an integer N = N(n) and polynomials f1(X), . . . , fN(X) ∈ Z[X] such that f (n,p) = fi(p) if
p ≡ i modulo N . For positive integers c and d , we define N (c, d) to be the set of finite nilpotent groups (up to
isomorphism) of class at most c generated by at most d generators, and put

g(n, c, d) := #
{
G ∈ N (c, d)

∣∣ |G| = n
}
.

We define the Dirichlet generating function

ζc,d(s) :=
∞∑

n=1

g(n, c, d)n−s ,

where s is a complex variable. In [1, Theorem 1.5] du Sautoy shows that
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ζc,d(s) =
∏

p prime

ζc,d,p(s), (1)

where, for a prime p,

ζc,d,p(s) :=
∞∑
i=0

g
(
pi, c, d

)
p−is .

This ‘Euler product’ reflects the fact that finite nilpotent groups are the direct products of their Sylow p-subgroups.
Du Sautoy goes on to prove that, for all primes p, the function ζc,d,p(s) is rational in p−s [1, Theorem 1.6]. In the
remainder of [1, Part I] he shows that these local zeta functions are amenable to methods from model theory and
algebraic geometry, and explains how in this setup Higman’s conjecture translates into a question about the reduction
modulo p of various (Z-defined) algebraic varieties.

Almost none of the functions ζc,d(s) have been explicitly calculated so far. For c = 1, it is a trivial and well-known
consequence of the structure theorem for finitely generated abelian groups that, for all d ∈ N,

ζ1,d (s) =
d∏

i=1

ζ(is),

where ζ(s) = ∑∞
n=1 n−s is the Riemann zeta function [1, p. 65]. The purpose of the current note is to give a formula

for the generating function ζ2,2(s). This seems to be the only one among the functions ζc,d(s), c > 1, for which explicit
computations exist (see also [1, Problem 4]).

Theorem 1.1. For (c, d) = (2,2) we have

ζ2,2(s) = ζ(s)ζ(2s)ζ(3s)2ζ(4s).

Corollary 1.2. For all primes p, we have

ζ2,2,p(s) = 1 + t + 2t2 + 4t3 + 6t4 + 8t5 + 13t6 + 17t7 + 23t8 + 31t9 + 40t10 + 50t11 + 65t12 + O
(
t13)

(where t = p−s ). The abscissa of convergence of ζ2,2(s) is α = 1, and ζ2,2(s) has an analytic continuation to the
whole complex plane. This continued function has a simple pole at s = 1, and thus

n∑
m=1

g(m,2,2) ∼ π6

540
ζ(3)2n = 2.5725 . . . n.

(Here f (n) ∼ g(n) means that limn→∞ f (n)/g(n) = 1.)

We note that — as in the case c = 1 — the local functions ζ2,2,p(s) are rational in p−s with constant coefficients (as
the prime p varies). We expect this ‘strong uniformity’ in the prime p to be the exception rather than the rule. Indeed,
computer calculations of g(pi,2,3) for p ∈ {2,3,5} and small values of i show that these numbers do depend on the
prime.1 A ‘restricted’ analogue of Higman’s PORC-conjecture would ask whether, for each pair (c, d), the coefficients
of the functions ζc,d,p(s) as rational functions in p−s are polynomial in p on residue classes of p modulo N = N(c, d).
We note that it is well known [2, Theorem 2] that, for all d � 2 and all primes p, the local zeta functions ζ �

F2,d ,p(s)

enumerating normal subgroups of finite p-power index in the free nilpotent groups F2,d are rational functions in p

and p−s (see also [5]). We refer to [1] for an explanation of a link between these Dirichlet generating functions and
the functions ζ2,d (s) defined above.

In our proof of Theorem 1.1 we adopt the strategy outlined in [1, Section 2]. It proceeds by finding ‘normal form’-
representatives of certain double cosets of integral matrices, and avoids any algebro-geometric or model-theoretic
considerations. We do, however, use methods pioneered in [2].

1 We thank Eamonn O’Brien for pointing this out to us.
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2. Proof of Theorem 1.1

The ‘Euler product decomposition’ (1) above reduces the problem to the enumeration of (isomorphism classes of)
p-groups of class at most 2 generated by at most 2 generators, for a fixed prime p. Each of these groups occurs as
the quotient of the group F̂p , the pro-p-completion of the free nilpotent group F := F2,2 of class 2 on 2 generators,
by a normal subgroup N of finite index. The automorphism group Gp of F̂p acts on the lattice of these normal
subgroups, and it is known that two subgroups give rise to the same (isomorphism type of) quotient if and only if they
are equivalent to each other under this action [1, Proposition 2.5]. To summarize, we have that, for all primes p,

ζ2,2,p(s) =
∑

N�F̂p

|F̂p : N |−s
∣∣Gp : StabGp

(N)
∣∣−1

(cf. [1, Theorem 1.13]). To turn this into an explicit formula for ζ2,2,p(s), we firstly linearize the problem of counting
normal subgroups in the group F̂p up to the action of Gp , in the following way. Consider the ‘Heisenberg Lie ring’
L := L2,2 := F/Z(F) ⊕ Z(F) associated with F , with Lie bracket induced from taking commutators in F . It is
well known [2, Remark on p. 206] that normal subgroups of index pn in F̂p correspond to ideals of index pn in the
Zp-Lie algebra Lp := L ⊗ Zp , and it is easily verified that orbits under Gp in the lattice of normal subgroups of F̂p

correspond to orbits under Aut(Lp). Having chosen a basis for L, e.g. (x, y, z) with [x, y] = z, full sublattices Λ in
(Lp,+) may be identified with cosets Γ M , Γ := GL3(Zp), M ∈ Mat(3,Zp) ∩ GL3(Qp), by encoding in the rows of
M the coordinates (with respect to the chosen basis, viewed as a basis for the Zp-Lie algebra Lp) of generators for Λ.

Given the basis (x, y, z) as above, every coset Γ M corresponding to a lattice of finite index in Lp contains a unique
matrix of the form

M =
⎛
⎝pn1 a12 a13

pn2 a23

pn3

⎞
⎠ , (2)

with n1, n2, n3 ∈ N0 := {0,1,2, . . .}, 0 � a12 < pn2 and 0 � a13, a23 < pn3 . It is easy to see and well known that Γ M

corresponds to an ideal in Lp (of index pn1+n2+n3 ) if and only if

n3 � n2, n1, vp(a12) (3)

(where vp denotes the p-adic valuation).
The choice of basis allows us to identify Aut(Lp) with the group of matrices of the form{(

α ∗
det(α)

) ∣∣∣∣ α ∈ GL2(Zp)

}
⊆ Γ.

The action of Aut(Lp) on the lattice of ideals of finite index in Lp is then simply given by the natural (right-)action
on the set of cosets Γ M . We claim that the matrices of the form (2) with

n1 = e1 + e2 + e3, n2 = e2 + e3, n3 = e3, a12 = 0, a13 = pe4, a23 = pe5, (4)

where

e1, . . . , e5 ∈ N0, e4, e5 � e3, e5 � e4 � e5 + e1 (5)

form a complete set of representatives of the double cosets

Γ \(Mat(3,Zp) ∩ GL3(Qp)
)
/Aut(Lp).

This suffices as then

ζ2,2,p(s) =
∑

Γ \M/Aut(Lp)

∣∣det(M)
∣∣−s =

∑
(e1,...,e5)∈N

5
0 satisfying (5)

p−3e3s−2e2s−e1s

= 1

(1 − p−s)(1 − p−2s)(1 − p−3s)2(1 − p−4s)
= ζp(s)ζp(2s)ζp(3s)2ζp(4s),

as an easy calculation yields.
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To prove our claim, it suffices to show that every double coset contains a matrix of the form (2), satisfying (4) and
(5), and that, if N and N ′ are in this normal form, the double cosets defined by them coincide only if N = N ′.

We start by observing that every double coset of matrices of the form (2) satisfying the ‘ideal condition’ (3) contains
a matrix of the form (2) with

n1 = e1 + e2 + e3, n2 = e2 + e3, n3 = e3, a12 = 0,

where

e1, e2, e3 ∈ N0, e4 := vp(a13) � e3, e5 := vp(a23) � e3.

This is because Aut(Lp) contains a copy of GL2(Zp), allowing us to bring the top-left 2 × 2-block of N into ‘Smith
normal form’. By a suitable base change we may also arrange for a13 = pe4, a23 = pe5 . Furthermore we can achieve
that e5 � e4 � e5 + e1 as we can always add multiples of the first row to the second row and multiples of pe1 times the
first row to the second row, each time ‘clearing’ the a21- and a12-entry respectively by right-multiplication by suitable
elements in Aut(Lp), namely elementary column operations involving only the first two columns, leaving the third
column stable.

Now assume that we are given matrices N and N ′ in normal form (2), satisfying (4) and (5), with associated
invariants (e1, . . . , e5) and (e′

1, . . . , e
′
5), respectively. For N and N ′ to define the same double cosets it is clearly

necessary that (e1, e2, e3) = (e′
1, e

′
2, e

′
3). Also, necessarily e5 = e′

5, as e5 determines the p-adic norm of the last column
of N , which is invariant both by left-multiplication by elements in Γ and by right-multiplication by Aut(Lp). We thus
have, without loss of generality,

N =
⎛
⎝pe1+e2+e3 pe5+m+n

pe2+e3 pe5

pe3

⎞
⎠ , N ′ =

⎛
⎝pe1+e2+e3 pe5+m

pe2+e3 pe5

pe3

⎞
⎠ ,

where m,n � 0,m + n � e3 and therefore in particular m < e3. If N and N ′ were to define the same double coset,
we must be able to ‘adjust’ the a13-entry of N to have valuation pe5+m by a suitable row operation. The only way to
achieve this is to add upm times the second row to the first, where u is a p-adic unit. If m > 0, there is no other way to
achieve Smith normal form on the top-left 2 × 2-block than to reverse this row operation. If m = 0 the only alternative
is to choose the a12-entry as a pivot to obtain this, which again has the invariants of N , not of N ′ if n �= 0. Thus n = 0,
completing the proof of Theorem 1.1.
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