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Abstract

Let {Lk}∞k=1 be a family of hyperplanes in Rn and let L0 be a limiting hyperplane of {Lk}. Let u be a distribution that satisfies
a natural wave front condition and has vanishing restrictions to Lk for all k � 1. Then u must be flat at L0. To cite this article:
J. Boman, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Platitude des distributions s’annulant sur une infinité d’hyperplans. Soit {Lk}∞k=1 une famille d’hyperplans dans Rn et soit
L0 un hyperplan limite de {Lk}. Si u est une distribution satisfaisant à une condition naturelle portant sur le front d’onde et qui
s’annule sur Lk pour tout k � 1, alors u est plate sur L0. Pour citer cet article : J. Boman, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let L be an infinite family of distinct hyperplanes L in Rn with limit point (in the natural topology on the n-
dimensional manifold of hyperplanes) L0, and let U be an open set in Rn intersecting L0. Let u be an infinitely
differentiable function vanishing on L ∩ U for all L ∈ L. Then it is easy to see that u must be flat on L0 ∩ U in the
sense that the derivatives of u of all orders vanish on L0. To prove this, assume that some derivative of order m of u is
different from zero at x0 ∈ L0 and that all derivatives of order < m vanish at x0. We may assume that x0 is the origin
in Rn. Then u(x) = p(x)(1 + O(|x|)) as |x| → 0, where p(x) is a non-zero homogeneous polynomial of degree m.
Then the restriction of u to L must be non-identically zero for any hyperplane L with sufficiently small distance to
the origin. This proves the statement.

The purpose of this note is to show that a similar statement is true for distributions u, provided that

WF(u) ∩ N∗(L0 ∩ U) = ∅, (1)

a condition which is needed for the restriction of u to L0 to be well defined [4, Corollary 8.2.7]. Here N∗(L0) denotes
the conormal manifold to L0, i.e., the set of (x, ξ) where x ∈ L0 and ξ is conormal to L0 at x, and WF(u) is the wave
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front set of u. By definition (x0, ξ0) /∈ WF(u) if there exists a function ψ ∈ C∞
0 such that ψ(x0) �= 0 and a conic

neighborhood Γ of ξ0 such that ψ̂u(ξ) is rapidly decaying in Γ in the sense that∣∣ψ̂u(ξ)
∣∣ � Cm/|ξ |m, ξ ∈ Γ, m = 1,2, . . . . (2)

Assume L0 is the hyperplane xn = 0. If (1) holds and x0 ∈ L0 ∩ U we can choose ψ ∈ C∞
0 (U) with ψ(x0) �= 0 such

that (2) holds with Γ = {ξ = (ξ ′, ξn); |ξ ′| < δ|ξn|} for some δ > 0. If ϕ(x′) is a test function in C∞
0 (Rn−1) defined

on L0, then the action of the restriction ψu|L0 on the test function ϕ can be defined by

〈ψu|L0, ϕ〉 = (2π)−n

∫
Rn

ψ̂u
(
ξ ′, ξn

)
ϕ̂
(−ξ ′)dξ.

Note that the integral must be absolutely convergent because of (2).
The space of (Schwartz) distributions on the open set U is denoted D′(U).

Theorem 1. Let {Lk}∞k=1 be an infinite family of (distinct) hyperplanes in Rn, n � 2, and let L0 = limk→∞ Lk (in the
topology of the manifold of hyperplanes). Let U be a bounded open subset of Rn. Assume u ∈ D′(U) satisfies (1) and

the restriction u|Lk∩U vanishes for all k � 1. (3)

Then u is flat in the set L0 ∩ (U \ F), where F is the (possibly empty) affine subspace of L0 of codimension � 1

F =
∞⋃

m=1

∞⋂
k=m

(Lk ∩ L0), (4)

that is, for every partial derivative ∂α of u the restriction of ∂αu to L0 ∩ (U \ F) vanishes.

Note that the wave front condition (1) is satisfied for all hyperplanes L sufficiently close to L0, since the wave front
set WF(u) is closed. Since WF(∂αu) ⊂ WF(u) for any partial derivative and any distribution u, the same is true for
all partial derivatives ∂αu. Note also that the set Fm = ⋂∞

k=m(Lk ∩ L0) is a (possibly empty) affine subspace of L0 of
codimension � 1 for every m (we may assume that Lk �= L0 for all k), and the sequence Fm is increasing, so it is clear
that F is an affine subspace as stated in the theorem. F can be described as the set of all points that are contained in
all except finitely many of the sets L0 ∩ Lk .

The fact that the exceptional set F may occur can be seen from the following example. Let u be the distribution
on R2 defined by u(x1, x2) = x2δ0(x1). Then WF(u) is equal to the conormal of the line x1 = 0, that is, WF(u) =
{(0, x2; ξ1,0); x2 ∈ R, ξ1 �= 0}. The restriction of u to any of the lines Lk = {x ∈ R2; x2 = x1/k}, k = 1,2, . . . , is
well defined and vanishes, but the restriction of ∂x2u = δ0(x1) to L0 = {x ∈ R2; x2 = 0} is δ0(x1), so u is not flat on
all of L0 but only on L0 \ F where F = {(0,0)}.

The assertion of Theorem 1 is in fact valid also if n = 1, because then condition (1) means that u is C∞ in some
neighborhood of the point L0, and a smooth function vanishing at an infinite sequence of points must be flat at a limit
point of that sequence; note that a hyperplane (affine submanifold of codimension 1) means a point in this case.

By our vanishing theorem for microlocally real analytic flat distributions [2], a distribution u that satisfies the
analytic wave front condition

WFA(u) ∩ N∗(L0 ∩ U) = ∅ (5)

and is flat on L0 ∩ U must vanish in some neighborhood of L0 ∩ U . (For the definition of the analytic wave front
set, WFA(u), see [4].) Combining this fact with Theorem 1 we obtain the following extension of the familiar fact that
a real analytic function of one variable that vanishes at infinitely many points with a finite limit point must vanish
identically:

Corollary 2. Let Lk , k = 1,2, . . . , be an infinite sequence of distinct hyperplanes in Rn and let L0 = limk→∞ Lk as
in Theorem 1. Let U be a bounded open subset of Rn. Assume u ∈ D′(U) satisfies (5) and (3). Then u = 0 in some
neighborhood of L0 ∩ (U \ F), where F is the set defined by (4).

In the recent article [3] we applied this corollary to give a new proof of a uniqueness result for a ray transform [1].
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2. Proof of Theorem 1

Since F is closed it is sufficient to prove that u is flat on L0 ∩ U1 for some open neighborhood U1 of an arbitrary
point of U \ F . Thus from now on we denote U1 by U and assume that U ∩ F = ∅.

We denote the coordinates in Rn by (x, y) where x ∈ Rn−1, y ∈ R, and the dual coordinates by (ξ, η). We may
assume that L0 is the plane y = 0. Let (x0,0) ∈ U ∩ L0 and choose a neighborhood V ⊂ U of (x0,0), a conic neigh-
borhood Γ = {(ξ, η); |ξ | < δ|η|} of the conormal (0,±1) to L0, and a function ψ ∈ C∞

0 (V ) such that ψ(x0,0) �= 0
and ψ̂u(ξ, η) is rapidly decaying in the cone Γ . From now on we shall denote ψu by u. We may assume that u is
a real-valued distribution in the sense that 〈u,ϕ〉 is real for all real-valued test functions ϕ. Denote by u|La,b

the re-
striction of u to the plane y = a · x + b, where a ∈ Rn−1 and b ∈ R. If |a| and |b| are sufficiently small this restriction
is well defined, and its action on a test function ϕ ∈ C∞

0 (Rn−1) can be written

〈u|La,b
, ϕ〉 = (2π)−n

∫ ∫
û(ξ, η)ϕ̂(−ξ − ηa)eibη dξ dη.

The fact that û has at most polynomial growth in the ξ -variable and is rapidly decaying in the cone |ξ | < δ|η| implies
that the integral is absolutely convergent if |a| is sufficiently small. For real-valued ϕ ∈ C∞

0 (Rn−1) we set

ρa,b(s) = ρϕ,a,b(s) = 〈u|Lsa,sb
, ϕ〉

= (2π)−n

∫ ∫
û(ξ, η)ϕ̂(−ξ − sηa)eisbη dξ dη, s ∈ R. (6)

Then ρa,b(0) = 〈u|L0 , ϕ〉 and ρa,b(1) = 〈u|La,b
, ϕ〉. It is clear that ρa,b ∈ C∞ in (−1,1), if |a| < δ/2. Differentiating

m times with respect to s we obtain

ρ
(m)
a,b (s) = (2π)−n

∫ ∫
û(ξ, η)ηm(−a · ∇ + ib)mϕ̂(−ξ − sηa)eisbη dξ dη (7)

and

ρ
(m)
a,b (0) = 〈

∂m
y u|L0 ,ψ

〉
, where ψ(x) = (a · x + b)mϕ(x).

Assume that L = {Lk} where Lk is the plane y = ak · x + bk . We now claim that for every m there exists s0 =
s0(ϕ, k,m) ∈ (0,1] such that

ρ
(m)
ak,bk

(s0) = 0, for all k and all ϕ. (Pm)

We shall prove this by induction over m. For m = 0 (Pm) is true with s0 = 1 by the assumption that u|Lak,bk
= 0

for all k. Let m be arbitrary and assume that (Pm) holds. Using the expression (7) for ρ
(m)
a,b in (Pm), dividing by

(|ak|2 + b2
k)

1/2, passing to a subsequence such that (ak, bk)/(|ak|2 + b2
k)

1/2 converges to a limit (a0, b0), and letting k

tend to infinity we obtain

0 =
∫ ∫

û(ξ, η)ηm(−a0 · ∇ + ib0)
mϕ̂(−ξ)dξ dη = 〈

∂m
y u|L0 , (a0 · x + b0)

mϕ
〉
.

Our assumption that U ∩F = ∅ implies that a0 · x + b0 �= 0 on L0 ∩U . Since ϕ is arbitrary it follows that ∂m
y u|L0 = 0

in U , and hence ρ
(m)
a,b (0) = 0 for every ϕ and every a and b. For an arbitrary k we now use the induction assump-

tion (Pm) once more together with Rolle’s theorem and obtain

0 = ρ
(m)
ak,bk

(s0) − ρ
(m)
ak,bk

(0) = ρ
(m+1)
ak,bk

(s1)

for some s1 ∈ (0, s0), which proves (Pm+1), and hence proves (Pm) for every m. By (6) we know that ρa,b is real-
valued, so the application of Rolle’s theorem is appropriate. Letting k tend to infinity and using (7) now gives

0 =
∫ ∫

û(ξ, η)ηmϕ̂(−ξ)dξ dη, (8)

that is, ∂m
y u|L0 = 0 for every m.
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It remains to show that an arbitrary mixed derivative ∂α
x ∂m

y u, where α = (α1, . . . , αn−1), must have vanishing
restriction to L0. By definition this means that∫ ∫

û(ξ, η)ξαηmϕ̂(−ξ)dξ dη = 0, ϕ ∈ C∞
0

(
Rn−1). (9)

Replacing ϕ in (8) with ∂α
x ϕ gives (9) and completes the proof.
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