

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Probability Theory

The survival probability of a critical branching process in a Markovian random environment

La probabilité de survie d'un processus de branchement critique en environnement aléatoire Markovien

Emile Le Page^a, Yinna Ye^{a,b}

^a LMAM, université de Bretagne-Sud, campus de Tohannic, BP 573, 56017 Vannes, France ^b LMPT, UFR sciences et techniques, université François-Rabelais, parc de Grandmont, 37200 Tours, France

ARTICLE INFO

Article history: Received 13 October 2009 Accepted after revision 14 January 2010 Available online 21 February 2010

Presented by Jean-Pierre Kahane

ABSTRACT

In this Note, we first prove a local limit theorem for a semi-Markov chain and then apply it to study the asymptotic behavior of the survival probability of a critical branching process in Markovian random environment.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans cette Note, nous montrons d'abord un théorème de la limite locale pour une chaîne semi-Markovienne. Nous appliquons ensuite ce résultat pour étudier le comportement asymptotique de la probabilité de survie d'un processus de branchement critique dans un milieu aléatoire Markovien.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

The study of branching processes in Markovian random environment has been developed by several authors, in particular by K.B. Athreya and S. Karlin [1]. However, the asymptotic behavior of the survival probability of such a process is not yet known. In this Note we handle this problem in the case of a critical branching process.

Consider the following model: $X = (X_n)_{n \ge 0}$ is an irreducible and aperiodic Markov chain on a finite space E with transition matrix P. The chain X has a unique invariant probability ν . We denote by G the set of generating functions of probability measures on \mathbb{N} , equipped with the topology of simple convergence on [0, 1]. $\mathcal{B}(G)$ is the Borel σ -algebra on G. In addition, we define a Markov chain $(M_n)_{n \ge 0} = (g_n, X_n)_{n \ge 0}$ with values in $G \times E$ and with transition probability Q defined by

 $Q\left\{(g,i), (A \times \{j\})\right\} = P(i,j)\overline{F}(i,j,A), \text{ for } (g,i) \in G \times E, A \in \mathcal{B}(G),$

where \overline{F} is a transition probability from $E \times E$ in the set of probabilities on G. The Markov chain $(M_n)_{n \ge 0}$ is called the *environment process*. Let $\Omega = (G \times E)^{\mathbb{N}}$ and $\mathcal{F} = \bigotimes^{\mathbb{N}} (\mathcal{B}(G) \otimes \mathcal{P}(E))$. We denote by $\mathbb{P}_{(g,i)}$ the unique probability on (Ω, \mathcal{F}) , such that for any $(g, i) \in G \times E$, any $n \ge 1$ and any bounded measurable function $f : (G \times E)^n \to \mathbb{R}$, we get

E-mail addresses: emile.le-page@univ-ubs.fr (E. Le Page), yinna.ye@univ-ubs.fr (Y. Ye).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.01.014

$$\int_{\Omega} f(M_{0}(\omega), M_{1}(\omega), \dots, M_{n}(\omega)) \mathbb{P}_{(g,i)}(d\omega)$$

= $\sum_{(j_{1}, j_{2}, \dots, j_{n}) \in E^{n}} P(i, j_{1}) \cdots P(j_{n-1}, j_{n}) \int_{C^{n}} f((g, i), (g_{1}, j_{1}), \dots, (g_{n}, j_{n})) \overline{F}(i, j_{1}, dg_{1}) \cdots \overline{F}(j_{n-1}, j_{n}, dg_{n}).$

To simplify the notations, $\mathbb{P}_{(Id,i)}$ will be denoted by \mathbb{P}_i and \mathbb{E}_i is its corresponding expectation.

Given $(M_n)_{n \ge 0}$, we define now the branching process $(Z_n)_{n \ge 0}$ such that $Z_0 = 1$ and the generating function of Z_n is

$$g_0 \circ g_1 \circ \cdots \circ g_{n-1}(s) := G_n(s), \quad 0 \leq s < 1.$$

Therefore, given $(M_n)_{n\geq 0}$, the survival probability of the branching process $(Z_n)_{n\geq 0}$ at time *n* is

$$1 - G_n(0) := q_n$$
.

Due to the Markov property of the probability \mathbb{P}_i , we have for $(i, j) \in E \times E$ and $n \ge 1$,

$$\mathbb{P}_i(Z_n > 0, X_n = j) = \mathbb{E}_i(q_n P(X_{n-1}, j)).$$

Let's consider $h: G \to \overline{\mathbb{R}}_+$, $g \mapsto h(g) := g'(1)$. The image of the probability $\overline{F}(i, j, dx)$ by the map h is denoted by F(i, j, dx). We assume in this paper the following hypotheses (H):

(H1) there exist $\alpha > 0$, such that for all $\lambda \in \mathbb{C}$ satisfying $|\operatorname{Re} \lambda| \leq \alpha$, we have

$$\sup_{(i,j)\in E\times E} \left|\widehat{F}(i,j,\lambda)\right| < +\infty, \quad \text{where } \widehat{F}(i,j,\lambda) = \int_{\mathbb{R}} e^{\lambda t} F(i,j,dt);$$

(H2) there exist $n_1 \ge 1$ and $(i_0, j_0) \in E \times E$, such that the measure $\mathbb{P}_{i_0}(X_{n_1} = j, S_{n_1} \in dx)$ has an absolutely continuous component with respect to the Lebesgue measure on \mathbb{R} ;

(H3) $\sum_{(i,j)\in E\times E} \nu(i)P(i,j) \int_{\mathbb{R}} tF(i,j,dt) = 0.$

By [1], the hypothesis (H3) implies

$$\mathbb{P}_{\mathcal{V}}(Z_n = 0) \to 1$$
, as $n \to +\infty$.

Such a branching process $(Z_n)_{n \ge 0}$ is called *critical*. Let us introduce some notations: set

$$\eta_{k,n} := f_k(g_{k+1,n}(0)),$$

where

$$f_k(s) := \frac{1}{1 - g_k(s)} - \frac{1}{g'_k(1)(1 - s)}, \quad \text{for } 0 \le s < 1 \quad \text{and} \quad g_{k,n} := g_k \circ g_{k+1} \circ \dots \circ g_{n-1}, \quad \text{for } 0 \le k \le n - 1;$$

$$S_n := Y_0 + Y_1 + \dots + Y_{n-1}, \quad \text{for } n \ge 1, \quad \text{with } S_0 := 0 \quad \text{and} \quad Y_k := \ln g'_k(1), \quad \text{for } k \ge 0.$$

Then we can obtain the following formula [4]:

$$q_n^{-1} = \exp(-S_n) + \sum_{k=0}^{n-1} \eta_{k,n} \exp(-S_k).$$
(1)

Theorem 1.1. Under hypotheses (H), for any $(i, j) \in E \times E$, there exists a constant $\beta_{i,j} > 0$, such that

$$\lim_{n \to +\infty} \sqrt{n} \mathbb{P}_i(Z_n > 0, X_n = j) = \beta_{i,j}.$$
(2)

For $n \ge 0$, we set

$$m_n = \min\{S_0, S_1, \ldots, S_n\}.$$

The proof of Theorem 1.1 is based on the following local limit theorem:

302

r

Theorem 1.2. Under hypotheses (H), for any $(i, j) \in E \times E$ and $x \ge 0$, we get

$$\lim_{n \to +\infty} \sqrt{n} \mathbb{P}_i(m_n \ge -x, X_n = j) = h_{i,j}(x) > 0, \tag{3}$$

where $h_{i,j}$ is an increasing harmonic function for $(S_n, X_n)_{n \ge 0}$ on $\mathbb{R}_+ \times E$.

Furthermore, there exists a constant $\sigma^2 > 0$, such that

$$h_{i,j}(x) \sim \sqrt{\frac{2}{\sigma^2}} \nu(j)x, \quad x \to +\infty.$$
 (4)

J. Geiger and G. Kersting [4], Y. Guivarc'h, E. Le Page and Q. Liu [5] proved an analog of Theorem 1.1 in the case of i.i.d. environment under weaker moment assumptions and without any hypotheses of absolute continuity of type (H2).

In the case when *E* contains one single point, Theorem 1.2 extends the local limit theorem for the minimum of a random walk on \mathbb{R} (see also [2]). Theorem 1.2 improves the results of E.L. Presman [6], especially we prove that for any $(i, j) \in E \times E$, the limit function $h_{i,j}$ defined in (3) does not vanish and we specify its asymptotic behavior as $x \to +\infty$.

2. Sketch of proofs

To prove Theorem 1.2, we make use of a factorization method due to E.L. Presman [6]. We denote by $L_{\infty}(E)$ the space of bounded function on *E*, equipped with the uniform norm. We define matrices $\mathcal{P}B_{Z}(\lambda)$, $\mathcal{Q}C_{Z}(\lambda)$, and Fourier–Laplace operators $P(\lambda)$ on $L_{\infty}(E)$ as follows:

$$\mathcal{P}B_{z}(\lambda) = \left[\sum_{n=1}^{+\infty} z^{n} \mathbb{E}_{i}\left(e^{\lambda S_{n}}; S_{1} > S_{n}, S_{2} > S_{n}, \dots, S_{n-1} > S_{n}, S_{n} < 0; X_{n} = j\right)\right]_{i,j},$$

$$\mathcal{Q}C_{z}(\lambda) = \left[\sum_{n=1}^{+\infty} z^{n} \mathbb{E}_{i}\left(e^{\lambda S_{n}}; S_{1} \ge 0, S_{2} \ge 0, \dots, S_{n-1} \ge 0, S_{n} \ge 0; X_{n} = j\right)\right]_{i,j},$$

$$P(\lambda)\varphi(i) = \sum_{j \in E} P(i, j)\varphi(j)\widehat{F}(i, j, \lambda) = \sum_{j \in E} P(i, j)\varphi(j) \int_{\mathbb{R}} e^{\lambda t} F(i, j, dt),$$

for $\varphi \in L_{\infty}(E)$, $i \in E$ and $|\operatorname{Re} \lambda| < \alpha$.

We first prove that the matrix $H(z, \lambda) := \sqrt{1-z} \left[\sum_{n=0}^{+\infty} z^n \mathbb{E}_i(e^{\lambda m_n}; X_n = j) \right]$ can be factorized as follows: for |z| < 1, Re $\lambda = 0$,

$$H(z,\lambda) = \left[I + \mathcal{P}B_{z}(\lambda)\right]\sqrt{1-z}\left[I + \mathcal{Q}C_{z}(0)\right]$$

In addition, we have the following identity, which is analogous to the well-known Wiener-Hopf factorization [3],

$$(I - zP(\lambda))^{-1} = [I + \mathcal{P}B_z(\lambda)][I + \mathcal{Q}C_z(\lambda)], \quad |z| < 1, \text{ Re } \lambda = 0.$$
(5)

Then using E.L. Presman's factorization theory [6] and especially analytical properties of such factorization, we can prove that

- (1) for Re $\lambda > 0$, the function $[I + \mathcal{P}B_z(\lambda)]$ is analytic with respect to z in $D_{\rho,\theta} = \{z; z \neq 1, |\arg(z-1)| \ge \theta > 0, |z| < \rho\}$, $\rho > 1, 0 < \theta < \pi/2$ and admits an analytical extension to the boundary of $D_{\rho,\theta}$;
- (2) as $\lambda \to 0$, the limit of $\lambda[I + \mathcal{P}B_1(\lambda)]$ exists;
- (3) $[I + QC_z(0)]$ is analytic with respect to z in $D_{\rho,\theta}$. Furthermore, $\sqrt{1 z}[I + QC_z(0)]$ is bounded in $D_{\rho,\theta}$ and admits a limit as $z \to 1$.

So for any $(i, j) \in E \times E$, the limit of $[H(z, \lambda)]_{i,j}$ as $z \to 1$ exists and is denoted by $[H(\lambda)]_{i,j}$, from which, leads to (3), using complex analysis argument. Moreover, we get

$$\lim_{\lambda \to 0^+} \lambda \left[H(\lambda) \right]_{i,j} = \sqrt{\frac{2}{\sigma^2}} \nu(j) > 0,$$

where σ^2 is a positive constant. Using Tauberian theorem [3], we obtain (4).

The proof of Theorem 1.1 is similar to the one in [4]. An important step is to check, using Theorem 1.2 and the formula (1), that for any $\rho > 1$, $x \ge 0$ and $i \in E$, we have

$$\limsup_{m \to +\infty} \limsup_{n \to +\infty} \sqrt{n} \mathbb{P}_i(Z_m > 0, Z_n = 0, m_{\varrho n} \ge -x) = 0.$$
(6)

3. More information on the proof of Theorem 1.1

For every $x \ge 0$ and every $(i, j) \in E \times E$, let denote by $\widehat{\mathbb{E}}_{(i, j, x)}$ the expectation corresponding to the unique probability $\widehat{\mathbb{P}}_{(i, j, x)}$ on (Ω, \mathcal{F}) such that for every integer $n \ge 1$ and every measurable, bounded function $f : (G \times E)^n \to \mathbb{R}$, we have

$$\int_{\Omega} f(M_1(\omega),\ldots,M_n(\omega))\widehat{\mathbb{P}}_{(i,j,x)}(\mathrm{d}\omega) = \frac{1}{h_{i,j}(x)} \int_{\Omega} f(M_1(\omega),\ldots,M_n(\omega))h_{X_n(\omega),j}(x+S_n(\omega))\mathbb{P}_i(\mathrm{d}\omega).$$

Set $q_{\infty} = \lim_{n \to +\infty} q_n$. Using the equality (6) and Theorem 1.2, we can establish that

$$\lim_{n \to +\infty} \sqrt{n} \mathbb{P}_i(Z_n > 0, X_n = j) = \lim_{x \to +\infty} h_{i,j}(x) \widehat{\mathbb{E}}_{(i,j,x)}(q_\infty)$$

References

- [1] K.B. Athreya, S. Karlin, On branching processes with random environments: I and II, Ann. Math. Stat. 42 (1971) 1499–1520, 1843–1858.
- [2] A.A. Borovkov, New limit theorems in boundary problems for sums of independent terms, Sibirsk. Mat. Zh. 3 (1962) 645–694; English transl. in: Selected Transl. Math. Stat. and Probab., vol. 5, Amer. Math. Soc., Providence, RI, 1965, pp. 315–372.
- [3] W. Feller, An Introduction to Probability Theory and Its Applications, vol. II, Wiley, New York, 1971.
- [4] J. Geiger, G. Kersting, The survival probability of a critical branching process in random environment, Theor. Veroyatnost. i Primenen. 45 (2000) 607–615. [5] Y. Guivarc'h, E. Le Page, Q. Liu, Normalisation d'un processus de branchement critique dans un environnement aléatoire, C. R. Acad. Sci. Paris, Ser. I 337
- (2003) 603–608.
- [6] E.L. Presman, Factorization methods and a boundary value problem for sum of random variables defined on a Markov chain, Math. USSR-Izv. 3 (4) (1969) 815–852.