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In this Note, we first prove a local limit theorem for a semi-Markov chain and then apply it
to study the asymptotic behavior of the survival probability of a critical branching process
in Markovian random environment.
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r é s u m é

Dans cette Note, nous montrons d’abord un théorème de la limite locale pour une chaîne
semi-Markovienne. Nous appliquons ensuite ce résultat pour étudier le comportement
asymptotique de la probabilité de survie d’un processus de branchement critique dans un
milieu aléatoire Markovien.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

The study of branching processes in Markovian random environment has been developed by several authors, in particular
by K.B. Athreya and S. Karlin [1]. However, the asymptotic behavior of the survival probability of such a process is not yet
known. In this Note we handle this problem in the case of a critical branching process.

Consider the following model: X = (Xn)n�0 is an irreducible and aperiodic Markov chain on a finite space E with
transition matrix P . The chain X has a unique invariant probability ν . We denote by G the set of generating functions
of probability measures on N, equipped with the topology of simple convergence on [0,1]. B(G) is the Borel σ -algebra
on G . In addition, we define a Markov chain (Mn)n�0 = (gn, Xn)n�0 with values in G × E and with transition probability Q
defined by

Q
{
(g, i),

(
A × { j})} = P (i, j)F (i, j, A), for (g, i) ∈ G × E, A ∈ B(G),

where F is a transition probability from E × E in the set of probabilities on G . The Markov chain (Mn)n�0 is called the
environment process. Let Ω = (G × E)N and F = ⊗

N
(B(G) ⊗ P (E)). We denote by P(g,i) the unique probability on (Ω, F ),

such that for any (g, i) ∈ G × E , any n � 1 and any bounded measurable function f : (G × E)n → R, we get
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∫
Ω

f
(
M0(ω), M1(ω), . . . , Mn(ω)

)
P(g,i)(dω)

=
∑

( j1, j2,..., jn)∈En

P (i, j1) · · · P ( jn−1, jn)

∫
Gn

f
(
(g, i), (g1, j1), . . . , (gn, jn)

)
F (i, j1,dg1) · · · F ( jn−1, jn,dgn).

To simplify the notations, P(Id,i) will be denoted by Pi and Ei is its corresponding expectation.
Given (Mn)n�0, we define now the branching process (Zn)n�0 such that Z0 = 1 and the generating function of Zn is

g0 ◦ g1 ◦ · · · ◦ gn−1(s) := Gn(s), 0 � s < 1.

Therefore, given (Mn)n�0, the survival probability of the branching process (Zn)n�0 at time n is

1 − Gn(0) := qn.

Due to the Markov property of the probability Pi , we have for (i, j) ∈ E × E and n � 1,

Pi(Zn > 0, Xn = j) = Ei
(
qn P (Xn−1, j)

)
.

Let’s consider h : G → R+ , g �→ h(g) := g′(1). The image of the probability F (i, j,dx) by the map h is denoted by F (i, j,dx).
We assume in this paper the following hypotheses (H):

(H1) there exist α > 0, such that for all λ ∈ C satisfying |Reλ| � α, we have

sup
(i, j)∈E×E

∣∣̂F (i, j, λ)
∣∣ < +∞, where F̂ (i, j, λ) =

∫
R

eλt F (i, j,dt);

(H2) there exist n1 � 1 and (i0, j0) ∈ E × E , such that the measure Pi0(Xn1 = j, Sn1 ∈ dx) has an absolutely continuous
component with respect to the Lebesgue measure on R;

(H3)
∑

(i, j)∈E×E ν(i)P (i, j)
∫

R
t F (i, j,dt) = 0.

By [1], the hypothesis (H3) implies

Pν(Zn = 0) → 1, as n → +∞.

Such a branching process (Zn)n�0 is called critical.
Let us introduce some notations: set

ηk,n := fk
(

gk+1,n(0)
)
,

where

fk(s) := 1

1 − gk(s)
− 1

g′
k(1)(1 − s)

, for 0 � s < 1 and gk,n := gk ◦ gk+1 ◦ · · · ◦ gn−1, for 0 � k � n − 1;

Sn := Y0 + Y1 + · · · + Yn−1, for n � 1, with S0 := 0 and Yk := ln g′
k(1), for k � 0.

Then we can obtain the following formula [4]:

qn
−1 = exp(−Sn) +

n−1∑
k=0

ηk,n exp(−Sk). (1)

Theorem 1.1. Under hypotheses (H), for any (i, j) ∈ E × E, there exists a constant βi, j > 0, such that

lim
n→+∞

√
nPi(Zn > 0, Xn = j) = βi, j. (2)

For n � 0, we set

mn = min{S0, S1, . . . , Sn}.
The proof of Theorem 1.1 is based on the following local limit theorem:
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Theorem 1.2. Under hypotheses (H), for any (i, j) ∈ E × E and x � 0, we get

lim
n→+∞

√
nPi(mn � −x, Xn = j) = hi, j(x) > 0, (3)

where hi, j is an increasing harmonic function for (Sn, Xn)n�0 on R+ × E.
Furthermore, there exists a constant σ 2 > 0, such that

hi, j(x) ∼
√

2

σ 2
ν( j)x, x → +∞. (4)

J. Geiger and G. Kersting [4], Y. Guivarc’h, E. Le Page and Q. Liu [5] proved an analog of Theorem 1.1 in the case of i.i.d.
environment under weaker moment assumptions and without any hypotheses of absolute continuity of type (H2).

In the case when E contains one single point, Theorem 1.2 extends the local limit theorem for the minimum of a random
walk on R (see also [2]). Theorem 1.2 improves the results of E.L. Presman [6], especially we prove that for any (i, j) ∈ E × E ,
the limit function hi, j defined in (3) does not vanish and we specify its asymptotic behavior as x → +∞.

2. Sketch of proofs

To prove Theorem 1.2, we make use of a factorization method due to E.L. Presman [6]. We denote by L∞(E) the space
of bounded function on E , equipped with the uniform norm. We define matrices P Bz(λ), QCz(λ), and Fourier–Laplace
operators P (λ) on L∞(E) as follows:

P Bz(λ) =
[ +∞∑

n=1

zn
Ei

(
eλSn ; S1 > Sn, S2 > Sn, . . . , Sn−1 > Sn, Sn < 0; Xn = j

)]
i, j

,

QCz(λ) =
[ +∞∑

n=1

zn
Ei

(
eλSn ; S1 � 0, S2 � 0, . . . , Sn−1 � 0, Sn � 0; Xn = j

)]
i, j

,

P (λ)ϕ(i) =
∑
j∈E

P (i, j)ϕ( j) F̂ (i, j, λ) =
∑
j∈E

P (i, j)ϕ( j)

∫
R

eλt F (i, j,dt),

for ϕ ∈ L∞(E), i ∈ E and |Reλ| < α.
We first prove that the matrix H(z, λ) := √

1 − z [∑+∞
n=0 zn

Ei(eλmn ; Xn = j)] can be factorized as follows: for |z| < 1,
Reλ = 0,

H(z, λ) = [
I + P Bz(λ)

]√
1 − z

[
I + QCz(0)

]
.

In addition, we have the following identity, which is analogous to the well-known Wiener–Hopf factorization [3],(
I − zP (λ)

)−1 = [
I + P Bz(λ)

][
I + QCz(λ)

]
, |z| < 1, Re λ = 0. (5)

Then using E.L. Presman’s factorization theory [6] and especially analytical properties of such factorization, we can prove
that

(1) for Reλ > 0, the function [I + P Bz(λ)] is analytic with respect to z in Dρ,θ = {z; z �= 1, |arg(z − 1)| � θ > 0, |z| < ρ},
ρ > 1, 0 < θ < π/2 and admits an analytical extension to the boundary of Dρ,θ ;

(2) as λ → 0, the limit of λ[I + P B1(λ)] exists;
(3) [I + QCz(0)] is analytic with respect to z in Dρ,θ . Furthermore,

√
1 − z[I + QCz(0)] is bounded in Dρ,θ and admits a

limit as z → 1.

So for any (i, j) ∈ E × E , the limit of [H(z, λ)]i, j as z → 1 exists and is denoted by [H(λ)]i, j , from which, leads to (3),
using complex analysis argument. Moreover, we get

lim
λ→0+ λ

[
H(λ)

]
i, j =

√
2

σ 2
ν( j) > 0,

where σ 2 is a positive constant. Using Tauberian theorem [3], we obtain (4).
The proof of Theorem 1.1 is similar to the one in [4]. An important step is to check, using Theorem 1.2 and the for-

mula (1), that for any � > 1, x � 0 and i ∈ E , we have

lim sup
m→+∞

lim sup
n→+∞

√
nPi(Zm > 0, Zn = 0,m�n � −x) = 0. (6)



304 E. Le Page, Y. Ye / C. R. Acad. Sci. Paris, Ser. I 348 (2010) 301–304
3. More information on the proof of Theorem 1.1

For every x � 0 and every (i, j) ∈ E × E , let denote by Ê(i, j,x) the expectation corresponding to the unique probability
P̂(i, j,x) on (Ω , F ) such that for every integer n � 1 and every measurable, bounded function f : (G × E)n → R, we have∫

Ω

f
(
M1(ω), . . . , Mn(ω)

)̂
P(i, j,x)(dω) = 1

hi, j(x)

∫
Ω

f
(
M1(ω), . . . , Mn(ω)

)
hXn(ω), j

(
x + Sn(ω)

)
Pi(dω).

Set q∞ = limn→+∞ qn . Using the equality (6) and Theorem 1.2, we can establish that

lim
n→+∞

√
nPi(Zn > 0, Xn = j) = lim

x→+∞ hi, j(x)Ê(i, j,x)(q∞).
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