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The aim of this Note is to present some new results concerning “almost everywhere” well-
posedness and stability of continuity equations with measure initial data. The proofs of all
such results can be found in Ambrosio et al. [4], together with some application to the
semiclassical limit of the Schrödinger equation.
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r é s u m é

Dans cette Note, nous présentons des nouveaux résultats concernant l’existence, l’unicité
(au sens « presque partout ») et la stabilité pour des équations de continuité avec données
initiales mesures. Les preuves de tous ces résultats sont données dans Ambrosio et al. [4],
avec aussi des applications à la limite semiclassique pour l’équation de Schrödinger.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Starting from the seminal paper of DiPerna and Lions [8] (dealing mostly with the transport equation), in [1,2] the
well-posedness of the continuity equation{

∂μt
∂t + ∇ · (btμt) = 0 on (0, T ) × R

d,

μ0 = μ̄
(1)

has been strongly related to well-posedness of the ODE (here we use the notation b(t, x) = bt(x)){
Ẋ(t, x) = bt(X(t, x)) for L 1-a.e. t ∈ (0, T ),
X(0, x) = x,

(2)

for “almost every” x ∈ R
d . (See [2] and the bibliography therein for the most recent developments on the theory of ODE with

nonsmooth coefficients.) More precisely, observe that being a solution to the ODE (2) for L n-a.e. x is not invariant under
modification of b in Lebesgue negligible sets, while many applications of the theory to fluid dynamics (see for instance [12,
13]) and conservation laws need this invariance property. This leads to the concept of regular Lagrangian flow (RLF in short):
one may ask that, for all t ∈ [0, T ], the image X(t, ·)�L d of the Lebesgue measure L d under the flow map x �→ X(t, x) is
still controlled by L d (see Definition 1.1 below). Then existence and uniqueness (up to L d-negligible sets) and stability of
the RLF X(t, x) in R

d hold true provided the functional version of (1), namely
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{
∂ wt
∂t + ∇ · (bt wt) = 0 on (0, T ) × R

d,

w0 = w̄,
(3)

is well-posed for any nonnegative initial datum w̄ ∈ L1(Rd)∩ L∞(Rd) in the set of nonnegative bounded integrable functions
L∞+ ([0, T ]; L1(Rd) ∩ L∞(Rd)).

Now we may view (1) as an infinite-dimensional ODE in P(Rd), the space of probability measures in R
d , and try to

obtain existence and uniqueness results for (1) in the same spirit of the finite-dimensional theory, starting from the simple
observation that t �→ δX(t,x) solves (1). We may expect that if we fix a “good” measure ν in the space P(Rd) of initial data,
then existence, uniqueness ν-a.e. and stability hold. Moreover, for ν-a.e. μ the unique and stable solution of (1) starting
from μ should be given by

μ(t,μ) :=
∫

δX(t,x) dμ(x) ∀t ∈ [0, T ], μ ∈ P
(
R

d). (4)

1. Continuity equations and flows

We use a standard and hopefully self-explanatory notation. Let b : [0, T ] × R
d → R

d be a Borel vector field belonging to
L1

loc([0, T ] × R
d), and set bt(·) := b(t, ·); we shall not work with the Lebesgue equivalence class of b, although a posteriori

the theory is independent of the choice of the representative.

Definition 1.1 (ν-RLF in R
d). Let X(t, x) : [0, T ] × R

d → R
d and ν ∈ M+(Rd) with ν 	 L d and with bounded density. We

say that X(t, x) is a ν-RLF in R
d (relative to b) if the following two conditions are fulfilled:

(i) for ν-a.e. x, the function t �→ X(t, x) is an absolutely continuous integral solution to the ODE (2) in [0, T ] with
X(0, x) = x;

(ii) X(t, ·)�ν � CL d for all t ∈ [0, T ], for some constant C independent of t .

By a simple application of Fubini’s theorem this concept is, unlike the single condition (i), invariant in the Lebesgue
equivalence class of b. In this context, since all admissible initial measures ν are bounded above by CL d , uniqueness of
the ν-RLF can and will be understood in the following stronger sense: if f , g ∈ L1(Rd)∩ L∞(Rd) are nonnegative and X and
Y are respectively an f L d-RLF and a gL d-RLF, then X(·, x) = Y (·, x) for L d-a.e. x ∈ { f > 0} ∩ {g > 0}.

Remark 1.2. We recall that the ν-RLF exists for all ν � CL d , and is unique in the strong sense described above under the
following assumptions on b: |b| is uniformly bounded, bt ∈ B V loc(R

d;R
d) and ∇ · bt = gtL d 	 L d for L 1-a.e. t ∈ (0, T ),

with

‖gt‖L∞(Rd) ∈ L1(0, T ), |Dbt |(B R) ∈ L1(0, T ) for all R > 0,

where |Dbt | denotes the total variation of the distributional derivative of bt . (See [1,7] and [6] for Hamiltonian vector fields,
but the literature is too large to be completely quoted here.)

Given a nonnegative σ -finite measure ν ∈ M+(P(Rd)), we denote by Eν ∈ M+(Rd) its expectation, namely∫
Rd

φ dEν =
∫

P(Rd)

∫
Rd

φ dμdν(μ) for all φ bounded Borel.

Definition 1.3 (Regular measures in M+(P(Rd))). Let ν ∈ M+(P(Rd)). We say that ν is regular if Eν � CL d for some
constant C .

Example 1.4.

(1) The first standard example of a regular measure ν is the law under ρL d of the map x �→ δx , with ρ ∈ L1(Rd)∩ L∞(Rd)

nonnegative. Actually, one can even consider the law under L d , and in this case ν would be σ -finite instead of finite.
(2) If d = 2n and z = (x, p) ∈ R

n × R
n (this factorization corresponds for instance to flows in a phase space), instead of

considering the law of under ρL 2n of the map (x, p) �→ δx ⊗ δp one may also consider the law under ρL n of the map
x �→ δx ×γ , with ρ ∈ L1(Rn

x)∩ L∞(Rn
x) nonnegative and γ ∈ P(Rn

p) bounded from above by a constant multiple of L n .

We observe that Definition 1.1 has a natural (but not perfect) transposition to flows in P(Rd):

Definition 1.5 (Regular Lagrangian flow in P(Rd)). Let μ : [0, T ]×P(Rd) → P(Rd) and ν ∈ M+(P(Rd)). We say that μ is
a ν-RLF in P(Rd) (relative to b) if

(i) for ν-a.e. μ, |b| ∈ L1
loc((0, T ) × R

d;μt dt), t �→ μt := μ(t,μ) is continuous from [0,1] to P(Rd) with μ(0,μ) = μ and
μt solves (1) in the sense of distributions;

(ii) E(μ(t, ·)�ν) � CL d for all t ∈ [0, T ], for some constant C independent of t .
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Notice that condition (ii) is weaker than μ(t, ·)�ν � Cν (which would be the analogue of (ii) in Definition 1.1 if we were
allowed to choose ν = L d), and it is actually sufficient and much more flexible for our purposes, since we would like to
consider measures ν generated as in Example 1.4(2).

2. Existence, uniqueness and stability of the RLF

In this section we recall the main existence and uniqueness results of the ν-RLF in R
d , and see their extensions to ν-RLF

in P(Rd). The following result is proved in [2, Theorem 19] for the part concerning existence and in [2, Theorem 16,
Remark 17] for the part concerning uniqueness.

Theorem 2.1 (Existence and uniqueness of the ν-RLF in R
d). Assume that (3) has existence and uniqueness in L∞+ ([0, T ]; L1(Rd) ∩

L∞(Rd)). Then, for all ν 	 L d with bounded density the ν-RLF exists and is unique.

The next result shows that, uniqueness of (3) in L∞+ ([0, T ]; L1(Rd)∩ L∞(Rd)) implies a stronger property, namely unique-
ness of the ν-RLF.

Theorem 2.2 (Existence and uniqueness of the ν-RLF in P(Rd)). Assume that (3) has uniqueness in L∞+ ([0, T ]; L1(Rd) ∩ L∞(Rd)).
Then, for all ν ∈ M+(P(Rd)) regular, there exists at most one ν-RLF in P(Rd). If (3) has existence in L∞+ ([0, T ]; L1(Rd)∩ L∞(Rd)),
this unique flow is given by

μ(t,μ) :=
∫
Rd

δX(t,x) dμ(x), (5)

where X(t, x) denotes the unique Eν-RLF.

For the applications it is important to show that RLF’s not only exist and are unique, but they are also stable. In the
statement of the stability result we shall consider measures νn ∈ P(P(Rd)), n � 1, and a limit measure ν . We shall
assume that νn = (in)�P, where (W , F ,P) is a probability measure space and in : W → P(Rd) are measurable; we shall
also assume that ν = i�P, with in → i P-almost everywhere. (Recall that Skorokhod theorem (see [5, §8.5, Vol. II]) shows
that weak convergence of νn to ν always implies this sort of representation, even with W = [0,1] endowed with the
standard measure structure, for suitable in , i.) The following formulation of the stability result is particularly suitable for the
application to semiclassical limit of the Schrödinger equation.

Henceforth, we fix an autonomous vector field b : R
d → R

d satisfying the following regularity conditions:

(a) d = 2n and b(x, p) = (p, c(x)), (x, p) ∈ R
d , c : R

n → R
n Borel and locally integrable;

(b) there exists a closed L n-negligible set S such that c is locally bounded on R
n \ S .

Theorem 2.3 (Stability of the ν-RLF in P(Rd)). Let in, i be as above and let μn : [0, T ] × in(W ) → P(Rd) be satisfying
μn(0, in(w)) = in(w) and the following conditions:

(i) (uniform regularity) sup
n�1

sup
t∈[0,T ]

∫
W

∫
Rd

φ dμn

(
t, in(w)

)
dP(w) � C

∫
Rd

φ dx for all φ ∈ Cc(R
d) nonnegative;

(ii) (uniform decay away from S) for some β > 1

sup
δ>0

lim sup
n→∞

∫
W

T∫
0

∫
B R

1

distβ(x, S) + δ
dμn

(
t, in(w)

)
dt dP(w) < ∞ ∀R > 0; (6)

(iii) (space tightness) for all ε > 0, P({w: supt∈[0,T ] μn(t, in(w))(Rd \ B R) > ε}) → 0 as R → ∞;
(iv) (time tightness) for P-a.e. w ∈ W , for all n � 1 and φ ∈ C∞

c (Rd), t �→ ∫
Rd φ dμn(t, in(w)) is absolutely continuous in [0, T ] and

lim
M↑∞ P

({
w ∈ W :

T∫
0

∣∣∣∣
( ∫

Rd

φ dμn

(
t, in(w)

))′∣∣∣∣ dt > M

})
= 0;

(v) (limit continuity equation)

lim
n→∞

∫
W

∣∣∣∣∣
T∫

0

[
ϕ′(t)

∫
Rd

φ dμn

(
t, in(w)

) + ϕ(t)

∫
Rd

〈b,∇φ〉dμn

(
t, in(w)

)]
dt

∣∣∣∣∣dP(w) = 0 (7)

for all φ ∈ C∞
c (Rd \ (S × R

n)), ϕ ∈ C∞
c (0, T ).
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Assume, besides (a), (b) above, that (3) has uniqueness in L∞+ ([0, T ]; L1 ∩ L∞(Rd)). Then the ν-RLF μ(t,μ) relative to b exists, is
unique (by Theorem 2.2) and

lim
n→∞

∫
W

sup
t∈[0,T ]

dP
(
μn

(
t, in(w)

)
,μ

(
t, i(w)

))
dP(w) = 0 (8)

where dP is any bounded distance in P(Rd) inducing weak convergence of measures.

An example of application of the above stability result is the following: let α ∈ (0,1) and let ψε
x0,p0

: [0, T ] × R
n → C be

a family of solutions to the Schrödinger equation{
iε∂tψ

ε
x0,p0

(t) = − ε2

2 �ψε
x0,p0

(t) + Uψε
x0,p0

(t),

ψε
x0,p0

(0) = ε−nα/2φ0
( x−x0

εα

)
ei(x·p0)/ε,

(9)

with φ0 ∈ C2
c (Rn) and

∫ |φ0|2 dx = 1. When the potential U is of class C2, it was proven in [10,11] that for every (x0, p0)

the Wigner transforms Wεψ
ε
x0,p0

(t) converge, in the natural dual space A′ for the Wigner transforms, to δX(t,x0,p0) as ε ↓ 0.

Here X(t, x, p) if the unique flow in R
2n associated to the Liouville equation

∂t W + p · ∇xW − ∇U (x) · ∇p W = 0. (10)

In [4], relying also on some a priori estimates of [3] (see also [9]), the authors consider a potential U which can be written
as the sum of a repulsive Coulomb potential Us plus a bounded Lipschitz iteration term Ub with ∇Ub ∈ B V loc. We observe
that in this case Eq. (10) does not even make sense for measure initial data, as ∇U is not continuous. Still, they can prove
full convergence as ε ↓ 0, namely

lim
ε↓0

∫
Rd

ρ(x0, p0) sup
t∈[−T ,T ]

dA′
(
Wεψ

ε
x0,p0

(t), δX(t,x0,p0)

)
dx0 dp0 = 0 ∀T > 0 (11)

for all ρ ∈ L1(R2n) ∩ L∞(R2n) nonnegative, where X(t, x, p) if the unique L 2n-RLF associated to (10) and dA′ is a bounded
distance inducing the weak∗ topology in the unit ball of A′ .

The proof of (11) relies on an application of Theorem 2.3 to the Husimi transforms of ψε
x0,p0

(t). The scheme is sufficiently
flexible to allow more general families of initial conditions displaying partial concentration, of position or momentum, or
no concentration at all: for instance the limiting case α = 1 in (9) (related to Example 1.4(2)) leads to

lim
ε↓0

∫
Rd

ρ(x0) sup
t∈[−T ,T ]

dA′
(
Wεψ

ε
x0,p0

(t),μ
(
t,μ(x0, p0)

))
dx0 = 0 ∀p0 ∈ R

n, T > 0

for all ρ ∈ L1(Rn) ∩ L∞(Rn) nonnegative, with μ(t,μ) given by (4) and μ(x0, p0) = δx0 × |φ̂0|2(· − p0)L n .
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