Number Theory

Goldbach Conjecture and the least prime number in an arithmetic progression ${ }^{\hat{*}}$

La conjecture de Goldbach et le plus petit nombre premier dans une progression arithmétique

Shaohua Zhang
School of Mathematics, Shandong University, Jinan, Shandong, 250100, China

ARTICLE INFO

Article history:

Received 24 November 2009
Accepted after revision 5 February 2010
Available online 26 February 2010
Presented by Christophe Soulé

Abstract

In this Note, we try to study the relations between the Goldbach Conjecture and the least prime number in an arithmetic progression. We give a new weakened form of the Goldbach Conjecture. We prove that this weakened form and a weakened form of the Chowla Hypothesis imply that every sufficiently large even integer may be written as the sum of two distinct primes. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{R É S U M É}

Dans ce document, nous essayons d'étudier les relations entre la conjecture de Goldbach et le plus petit nombre premier dans une progression arithmétique. Nous donnons une nouvelle forme faible de la conjecture de Goldbach. Nous prouvons que cette forme affaiblie et une forme affaiblie de l'hypothèse de Chowla impliquent que tout entier pair suffisamment grand peut être écrit comme une somme de deux nombres premiers distincts.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Goldbach's famous conjecture states that every even integer $2 n \geqslant 4$ is the sum of two primes. Since it is trivial that for infinitely many even integers: $2 p=p+p$ (for every prime p), we give a slightly different form of this conjecture: every even integer $2 n \geqslant 8$ is the sum of two distinct primes. Thus, one can state Conjecture 1 below, which is also called a weakened form of Goldbach's Conjecture or the necessary condition of Goldbach's Conjecture.

Conjecture 1. For every integer $n>5$, there exists a natural number r such that $2 n-p_{r}$ is coprime to each of $2 n-p_{1}$, $\ldots, 2 n-p_{r-1}, 2 n-p_{r+1}, \ldots, 2 n-p_{k}$, where $p_{1}, \ldots, p_{r-1}, p_{r}, p_{r+1}, \ldots, p_{k}$ are all odd primes smaller than n, p_{r} satisfies $\left(p_{r}, n\right)=1$ and $1 \leqslant r \leqslant k=\pi(n-1)-1$.

[^0]Let k, l denote positive integers with $(k, l)=1$ and $1 \leqslant l \leqslant k-1$. Denote by $p(k, l)$ the least prime $p \equiv l(\bmod k)$. Let $p(k)$ be the maximum value of $p(k, l)$ for all l with $(k, l)=1$ and $1 \leqslant l \leqslant k-1$. In 1992, Heath-Brown [2] proved $p(k) \ll k^{5.5}$. This is the best known result on $p(k)$. Recently, Heath-Brown told the author that Xylouris (http://arxiv.org/abs/0906.2749) has improved his result to $p(k) \ll k^{5.2}$. Chowla [1] has observed that $p(k) \ll k^{2+\epsilon}$ for every $\epsilon>0$ assuming the Generalized Riemann Hypothesis. He further conjectured $p(k) \ll k^{1+\epsilon}$ for every $\epsilon>0$. Based on the conjecture of Chowla, one might state the following, Conjecture 2:

Conjecture 2. For every sufficiently large positive integer k, namely when $k>c_{1}$, then $p(k)<k^{1.5}$, where c_{1} is a positive constant.

The object of this Note is to study the relations between the Goldbach Conjecture and the least prime number in an arithmetic progression. We obtained the following Theorem 1 which gives a sufficient condition for the Goldbach Conjecture. As we know, even under Riemann hypothesis or if the generalized Riemann hypothesis holds, nobody has proved up until now that the Goldbach Conjecture is true. Therefore, needless-to-say, that refining the results of Heath-Brown and Xylouris, and proving Conjecture 1 , should be given much attention.

Theorem 1. If Conjecture 1 and Conjecture 2 hold, then every sufficiently large, even integer may be written as the sum of two distinct primes.

2. The proof of Theorem 1

Proof. One can prove that for every prime $p \geqslant 48673$, and any integer a with $1 \leqslant a<p^{1.5}$, there is a prime q coprime to a and such that $4 q^{3}<p$.

By the prime number theorem in an arithmetic progression, it is easy to prove that for any prime p with $p \leqslant$ $\max \left\{c_{1}, 48673\right\}$, (c_{1} is the positive constant in Conjecture 2), there exists a positive constant $c_{2}>6$ such that for every positive integer $n>c_{2}$, when $(p, n)=1$, there exist two distinct odd primes p_{1} and p_{2} satisfying $2 n \equiv p_{1} \equiv p_{2}(\bmod p)$ and $p_{1}, p_{2} \in Z_{n}^{*}=\{x \mid 1 \leqslant x \leqslant n,(x, n)=1\}$.

Let n be an integer $>c_{2}$. Since we assume Conjecture 1 , there exists $r>1$ such that $\left(p_{r}, n\right)=1$ and $2 n-p_{r}$ is coprime to every $2 n-p$ when p ranges through the odd primes $\leqslant n$ and different from p_{r}. We will show that $2 n-p_{r}$ is prime. If this is the case, then Theorem 1 is proved, so let us suppose we can write $2 n-p_{r}=p m$, where p is the least prime factor of $2 n-p_{r}$. Thus, $2 n>p^{2}$.

We have $p>\max \left\{c_{1}, 48673\right\}$. Indeed, if p is smaller, we can find two odd primes say q_{1} and q_{2}, not more than n and prime to $2 n$, such that $2 n \equiv q_{1} \equiv q_{2}(\bmod p)$. At most one of them, say q_{1}, can be equal to p_{r}. This means that $2 n-p_{r}$ is not coprime to $2 n-q_{2}$, contrarily to our hypothesis on p_{r}.

Note that $p_{r} \neq p$ since $\left(p_{r}, n\right)=1$. If $p_{r}<p$, then $p+p_{r}<p^{1.5}$ and there is a prime q coprime to $p+p_{r}$ and such that $4 q^{3}<p$. Since we suppose that Conjecture 2 holds, hence there is a prime x such that $x \equiv p+p_{r}(\bmod p q)$ and $x<(p q)^{1.5}<\frac{p^{2}}{2}<n$. Clearly, $p_{r} \neq x$. But $p \mid\left(2 n-p_{r}, 2 n-x\right)$. It is a contradiction by our assumption on p_{r}.

Hence $p_{r}>p$. We write $p_{r}=p l+v$ with $1 \leqslant v<p$. If $l \geqslant \sqrt{p}$, there is a prime y such that $y \equiv v(m o d p)$ and $y<p^{1.5}<p_{r}$ (since we suppose Conjecture 2). However, we also have $p \mid\left(2 n-p_{r}, 2 n-y\right)$, it is contrary to our assumption on p_{r} again. So we have $l<\sqrt{p}, l v<p^{1.5}$ and there is a prime q coprime to $l v$ and such that $4 q^{3}<p$. Note that there is a prime z such that $z \equiv v(\bmod p q)$ and $z<(p q)^{1.5}<\frac{p^{2}}{2}<n$ (since we suppose that Conjecture 2 holds). Obviously, we have $z \neq p_{r}$ since $(q, l)=1$. But $p \mid\left(2 n-p_{r}, 2 n-z\right)$. The contradiction implies that $2 n-p_{r}$ is a prime number. This completes the proof of Theorem 1.

Acknowledgements

I am very greatfull to the referees and Professor Heath-Brown for their comments improving the presentation of the Note, and also to my supervisor Professor Xiaoyun Wang for her suggestions. Thanks also go to Mingqiang Wang, Huaning Liu and Hongbo Yu for their help. I thank my father and my wife for their encouragement and also thank the key lab of cryptography technology and information security in Shandong University and the Institute for Advanced Study in Tsinghua University, for providing me with excellent conditions.

References

[1] S. Chowla, On the least prime in an arithmetic progression, J. Indian Math. Soc. 1 (2) (1934) 1-3.
[2] D.R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (2) (1992) 265-338.

[^0]: in This work was partially supported by the National Basic Research Program (973) of China (No. 2007CB807902) and the Natural Science Foundation of Shandong Province (No. Y2008G23).

 E-mail address: shaohuazhang@mail.sdu.edu.cn.
 1631-073X/\$ - see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2010.02.011

