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We introduce the notion of a topological fixed point in Boolean Networks: a fixed point
of Boolean network F is said to be topologic if it is a fixed point of every Boolean
network with the same interaction graph as the one of F . Then, we characterize the
number of topological fixed points of a Boolean network according to the structure of its
interaction graph.
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r é s u m é

Nous introduisons la notion de point fixe topologique dans les réseaux booléens : un point
fixe d’un réseau booléen F est dit topologique s’il est un point fixe de tous les réseaux
booléens ayant le même graphe d’interaction que F . Ensuite, nous caractérisons le nombre
de points fixes topologiques d’un réseau booléen en fonction de la structure de son graphe
d’interaction.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We are interested in the relationships between the stable states and the topology of Boolean networks. On one side,
the dynamics of a Boolean network with n components is usually described by the successive iterations of a map F from
{0,1}n to itself. The stable states of the network then correspond to the fixed points of F . On the other side, the topology
of the network is often described by an interaction graph G that can be deduced from F . The vertices correspond to the
network components, and the edges, which are directed and signed, describe causal relationships in terms of activations
and inhibitions between components.

Boolean networks have been applied in many areas, especially for modeling gene networks (see, for instance, the work
of Kauffman [4,5] and Thomas [7,8]). The relationships between G and the fixed points of F are of particular interest in
this context: fixed points have often biological meanings (e.g. stable patterns of gene expressions corresponding to partic-
ular cellular functions) [5,8,6], and the first reliable information obtained when biologists study gene networks are often
represented in terms of interaction graphs [3].

In this note, we focus on the fixed points of F that only depend on G , and we say that these are the topological fixed
points of F . Topological fixed points of F can be seen as “robust” fixed points in the sense that they remain fixed points
after any perturbation of F that does affect the interaction graph G of the network. As a main result, we characterize the
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number of topological fixed points of F according to the structure of G . This characterization uses and generalizes a theorem
of Aracena, Demongeot and Goles [1,2].

2. Definitions

2.1. Interaction graph

An n-interaction graph G is a directed graph on {1, . . . ,n} in which each arc ji (from j to i) is either positive, negative
or unsigned. The set of positive, negative and unsigned arcs of G is denoted by G + , G − , and G 0, respectively. The set of
positive (resp. negative, unsigned) predecessors of a vertex i is G +

i = { j | ji ∈ G +} (resp. G −
i = { j | ji ∈ G −}, G 0

i = { j | ji ∈ G 0}).
The set of signed predecessors of i is G +

i ∪ G −
i . An undirected path of G is a sequence of p � 1 vertices i0i1 . . . ip such that

ikik+1 or ik+1ik is an arc of G , 0 � k < p. Such a path joins i0 and ip , and is a cycle if i0 = ip . An undirected path without
unsigned arc is signed. A signed undirected path is positive if it contains an even number of negative arcs, and negative
otherwise. G is connected if there exists an undirected path joining each pair of distinct vertices. A connected component of
G is a maximal subset C of vertices with the property that G has an undirected path joining each pair of distinct vertices
taken in C . We denote by G̃ the n-interaction graph that we obtain by removing the unsigned arcs of G . Formally, G̃ is the
n-interaction graph such that G̃ + = G + , G̃ − = G − and G̃ 0 = ∅.

2.2. Topological fixed point

Consider a Boolean map F = ( f1, . . . , fn) : {0,1}n → {0,1}n, x = (x1, . . . , xn) �→ F (x) = ( f1(x), . . . , fn(x)). The discrete
derivative of f i with respect to the variable x j is the map f i j : {0,1}n → {−1,0,1} defined by:

f i j(x) = f i(x1, . . . , x j−1,1, x j+1, . . . , xn) − f i(x1, . . . , x j−1,0, x j+1, . . . , xn) (i, j = 1, . . . ,n).

The interaction graph of F is the n-interaction graph G(F ) defined by: for i, j = 1, . . . ,n, there exists an arc ji if f i j �= 0, and
this arc is positive if f i j � 0, negative if f i j � 0, and unsigned otherwise (that is, if f i j is somewhere positive and somewhere
negative). Note that f i j �= 0 if and only if the value of f i depends on the value of x j . A point x ∈ {0,1}n is a fixed point of F if
F (x) = x, and x is a topological fixed point of F if it is a fixed point of every map H : {0,1}n → {0,1}n such that G(H) = G(F ).

2.3. Admissible interaction graph

We say that an n-interaction graph G is admissible if there exists F : {0,1}n → {0,1}n such that G(F ) = G . If G is
admissible, we say that x ∈ {0,1}n is a topological fixed point of G if x is a fixed point of every map F : {0,1}n → {0,1}n such
that G(F ) = G . So x is a topological fixed point of F if and only if x is a topological fixed point of G(F ).

2.4. Boolean operations

We set 0 = σ−(0) = σ+(1) = 1; 1 = σ−(1) = σ+(0) = 0; and x = (x1, x2, . . . , xn). A sum of Boolean variables is always
a Boolean sum (1 + 1 = 1), and the sum modulo 2 is denoted by ⊕. By convention, the empty product is 1 and the empty
sum is 0.

3. Results

Let F be a map from {0,1}n to itself such that G(F ) has no unsigned arc. We say that G(F ) has the property P if G(F )

is connected, if each vertex of G(F ) has a predecessor, and if G(F ) has no undirected negative cycle. Aracena, Demongeot
and Goles [2,1] proved a theorem that can be stated as follows with our notations:

If G(F ) has the property P , then there exists x ∈ {0,1}n such that x and x are fixed points of F .

An easy unmentioned consequence of their constructive proof (that we use and extend here) is that x and x are actually
topological fixed points of F , and that no other topological fixed point exists. So, given an n-interaction graph G without
unsigned arcs (such a graph is always admissible, cf. Remark 4.2 below), we have the following:

If G has the property P , then G has exactly two topological fixed points, and these are of the form x, x.

In the following, we show that the converse of this slightly stronger version of the theorem of Aracena et al. is true:

If G has exactly two topological fixed points, then these are of the form x, x, and G has the property P .

The two above statements are in fact contained in the following theorem, which provides a characterization of the number
of topological fixed points of any admissible interaction graph:

Theorem 3.1. Let G be an admissible n-interaction graph.
(1) Let p be the number of connected components of G̃ . If each vertex of G has a predecessor and at most one unsigned predecessor,

and if G has no undirected negative cycle, then G has exactly 2p topological fixed points. Otherwise, G has 0 topological fixed points.
(2) If x is a topological fixed point of G , then x is also a topological fixed point of G .
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Remark 3.2. If G has m arcs, then the number of connected components of G̃ can be computed in O(n + m), and the
presence of an undirected negative cycle in G can be checked with the same complexity. So following Theorem 3.1, the
number of topological fixed points of G can be computed in O(n + m).

4. Proof of Theorem 3.1

We begin with a basic lemma on unsigned arcs.

Lemma 4.1. Let G be an n-interaction graph. If G is admissible, then every vertex of G with a unique unsigned predecessor has at
least two signed predecessors.

Proof. Suppose that G is admissible, and that G has a vertex i with a unique unsigned predecessor, say k. Then, for each
F : {0,1}n → {0,1}n such that G(F ) = G , there exists x, y ∈ {0,1}n such that:

0 = f i(x1, . . . , xk−1,0, xk+1, . . . , xn) < f i(x1, . . . , xk−1,1, xk+1, . . . , xn) = 1,

1 = f i(y1, . . . , yk−1,0, yk+1, . . . , yn) > f i(y1, . . . , yk−1,1, yk+1, . . . , yn) = 0.

So the value of f i depends on the value of at least one variable x j , j �= k, and it is easy to see that if f i only depends on xk
and x j , then j is another unsigned predecessor of i, a contradiction. �
Remark 4.2. This necessary condition for admissibility is also sufficient. (Indeed, if each vertex of G with a unique unsigned
predecessor has at least two signed predecessors, then it is easy to see that G is the interaction graph of the map F defined
by: (1) for each i without unsigned predecessor, f i(x) = ∑

j∈G +
i

x j + ∑
j∈G −

i
x j ; (2) for each i with a unique unsigned

predecessor k, f i(x) = xk σ s1 (xl1 ) + xk σ s2 (xl2 ) + ∑
j∈G +

i \{l1,l2} +
∑

j∈G −
i \{l1,l2} x j , where l1 ∈ G s1

i and l2 ∈ G s2
i are two signed

predecessors of i; (3) for each i with p � 2 unsigned predecessors k1, . . . ,kp , f i(x) = ∑
1�q<p(xkq ⊕ xkq+1 ) + ∑

j∈G +
i

x j +
∑

j∈G −
i

x j .)

The main lemma follows:

Lemma 4.3. Let G be an admissible n-interaction graph. A point α ∈ {0,1}n is a topological fixed point of G if and only if (1) every
vertex of G has a predecessor and at most one unsigned predecessor, and (2) α j = αi for all ji ∈ G + , and α j �= αi for all ji ∈ G − .

Proof. (Sufficient condition) Let F : {0,1}n → {0,1}n be such that G(F ) = G , and let us show that α is a fixed point of F .
Suppose, by contradiction, that there exists a vertex i such that f i(α) �= αi . If i has no unsigned predecessor, we set X =
{x | f i(x) = αi}; since i has a predecessor, f i is not constant, so X is not empty. If i has a unique unsigned predecessor,
say k, we set X = {x | f i(x) = αi, xk = αk}; since k is an unsigned predecessor of i, for all a,b ∈ {0,1}, there exists x such
that f i(x) = a and xk = b, so X is not empty. Let x be a point of X minimizing the Hamming distance d(x,α), that is, the
number of j ∈ {1, . . . ,n} such that x j �= α j . Since f i(x) �= f i(α), there exists j such that x j �= α j , and, by construction, j is
not an unsigned predecessor of i. Consider the point y such that y j = x j = α j and yl = xl for every vertex l �= j. We have
d(y,α) = d(x,α) − 1. So y /∈ X , and we deduce that f i(y) �= f i(x) = αi . So f i j(x) > 0 if αi = x j , and f i j(x) < 0 if αi �= x j .
Since j is not an unsigned predecessor of i, and since x j �= α j , we deduce that either ji ∈ G + and αi �= α j , or ji ∈ G − and
αi = α j , a contradiction. So f i(α) = αi for all vertex i.

(Necessary condition) Suppose that α is a topological fixed point of G . We will show that conditions (1) and (2) hold for
an arbitrary given vertex i. Let us say that hi : {0,1}n → {0,1} is admissible if there exists F : {0,1}n → {0,1}n such that
f i = hi and G(F ) = G . So if hi is admissible, then hi(α) = αi .

Suppose that i has p � 2 unsigned predecessors k1, . . . ,kp . Consider the four following maps from {0,1}n to {0,1}:

h1
i (x) = ∏

1�q<p(xkq ⊕ xkq+1) · ∏ j∈G +
i

x j · ∏ j∈G −
i

x j, h3
i (x) = ∑

1�q<p(xkq ⊕ xkq+1) + ∑
j∈G +

i
x j + ∑

j∈G −
i

x j,

h2
i (x) = ∏

1�q<p(xkq ⊕ xkq+1) · ∏ j∈G +
i

x j · ∏ j∈G −
i

x j, h4
i (x) = ∑

1�q<p(xkq ⊕ xkq+1) + ∑
j∈G +

i
x j + ∑

j∈G −
i

x j .

It is easy to see that hr
i is admissible for r = 1,2,3,4. So hr

i (α) = αi for r = 1,2,3,4. But if h1
i (α) = 1 then h2

i (α) = 0, and if
h3

i (α) = 0 then h4
i (α) = 1. We deduce that h1

i (α) �= h2
i (α) or h3

i (α) �= h4
i (α), a contradiction. So i has at most one unsigned

predecessor. So we have the following two cases.

Case 1: the vertex i has no unsigned predecessor. Consider the two following maps from {0,1}n to {0,1}:

h1
i (x) = ∏

j∈G +
i

x j · ∏ j∈G −
i

x j, h2
i (x) = ∑

j∈G +
i

x j + ∑
j∈G −

i
x j .

It is easy to see that h1
i and h2

i are admissible, so h1
i (α) = h2

i (α) = αi . If i has no predecessor, then h1
i (α) = 1 and h2

i (α) = 0,
a contradiction. So i has a predecessor, and condition (1) holds for i. We now prove that the condition (2) holds too. Suppose
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that ji ∈ G + . If αi = 1 then h1
i (α) = 1 thus α j = 1, and if αi = 0 then h2

i (α) = 0 thus α j = 0. So in both cases, α j = αi . We
prove similarly that α j �= αi for every ji ∈ G − .

Case 2: the vertex i has a unique unsigned predecessor k. It is sufficient to prove that condition (2) holds. By Lemma 4.1, i has
at least two signed predecessors, say l1 ∈ G s1

i and l2 ∈ G s2
i . Consider the following four maps:

h1
i (x) = xk σ s1(xl1) + xk σ s2(xl2) + ∑

j∈G +
i \{l1,l2} x j + ∑

j∈G −
i \{l1,l2} x j,

h2
i (x) = xk σ s2(xl2) + xk σ s1(xl1) + ∑

j∈G +
i \{l1,l2} x j + ∑

j∈G −
i \{l1,l2} x j,

h3
i (x) = (

xk + σ s1(xl1)
)(

xk + σ s2(xl2)
)∏

j∈G +
i \{l1,l2} x j

∏
j∈G −

i \{l1,l2} x j,

h4
i (x) = (

xk + σ s2(xl2)
)(

xk + σ s1(xl1)
)∏

j∈G +
i \{l1,l2} x j

∏
j∈G −

i \{l1,l2} x j .

It is easy to see that hr
i is admissible for r = 1,2,3,4. So hr

i (α) = αi for r = 1,2,3,4. For all j ∈ (G +
i ∪ G −

i ) \ {l1, l2}, we
prove, as in the first case, that α j = αi if ji ∈ G + and α j �= αi if ji ∈ G − . Then, if αi = 0 we have h1

i (α) = h2
i (α) = 0, and

we deduce that σ s1 (αl1 ) = σ s2 (αl2 ) = 0. If αi = 1 then h3
i (α) = h4

i (α) = 1, and we deduce that σ s1 (αl1 ) = σ s2 (αl2 ) = 1. So
σ s1 (αl1 ) = σ s2 (αl2 ) = αi in both cases, and so the condition (2) holds for all the signed predecessors of i. �
Remark 4.4. The condition (2) is equivalent to the condition “every undirected path of G̃ joining j and i is positive if
α j = αi , and negative if α j �= αi”. As a consequence, if G has a topological fixed point, then G̃ and G have no undirected
negative cycle.

Remark 4.5. We deduce from Lemma 4.3 that if each vertex of G has at most one unsigned predecessor, then α is a
topological fixed point of G if and only if α is a topological fixed point of G̃ .

The second part of Theorem 3.1 is an immediate consequence of Lemma 4.3. To prove the first part, we need a last
lemma.

Lemma 4.6. Let G be an admissible n-interaction graph. If G̃ is connected, if each vertex of G has a predecessor and at most one
unsigned predecessor, and if G has no undirected negative cycle, then G has exactly 2 topological fixed points.

Proof. For each vertex i �= 1, let P1i be an undirected path of G̃ joining 1 and i (G̃ is connected). Let α ∈ {0,1}n be defined
by: α1 = 0, αi = 0 if P1i is positive, and αi = 1 otherwise (2 � i � n). If ji ∈ G + and α j �= αi , then, by definition, P1 j and
P1i have opposite signs. So these paths, together with the positive arc ji, form an undirected negative cycle, a contradiction.
We prove similarly that if ji ∈ G − then α j �= αi . Consequently, according to Lemma 4.3, α and α are topological fixed points
of G . Consider a point β �= α,α. Then there exists i, j such that βi = αi and β j �= α j . Let P be an undirected path of G̃

joining j and i (G̃ is connected). According to Remark 4.4, P is positive if and only if α j = αi . So P is positive if and only
if β j �= βi , and according to the same remark, β is not a topological fixed point of G . �

Suppose that G̃ has p connected components, and suppose that G has the following property P ′: each vertex of G
has a predecessor and at most one unsigned predecessor, and G has no undirected negative cycle. Then, each connected
component of G̃ induces an interaction graph that satisfies the conditions of the previous lemma, and that has thus exactly
two topological fixed points. It is then clear that G̃ has exactly 2p topological fixed points, and we deduce from Remark 4.5
that G has also 2p topological fixed points. If G does not satisfy the property P ′ , following Lemma 4.3 and Remark 4.4,
G has 0 topological fixed points. This completes the proof of Theorem 3.1.
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