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We build Gaussian wave packets for the linear Schrödinger equation and its finite differ-
ence space semi-discretization and illustrate the lack of uniform dispersive properties of
the numerical solutions as established in Ignat and Zuazua (2009) [6]. It is by now well
known that bigrid algorithms provide filtering mechanisms allowing to recover the unifor-
mity of the dispersive properties as the mesh size goes to zero. We analyze and illustrate
numerically how these high frequency wave packets split and propagate under these bigrid
filtering mechanisms, depending on how the fine grid/coarse grid filtering is implemented.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On construit des paquets d’ondes gaussiennes pour l’équation de Schrödinger linéaire conti-
nue unidimensionnelle ainsi que pour sa semi-discrétisation en espace par différences
finies. On illustre numériquement le manque d’uniformité par rapport au pas du maillage
des propriétés de dispersion des solutions numériques démontré dans Ignat et Zuazua
(2009) [6]. Par ailleurs, il est bien connu que les algorithmes bi-grilles sont des mécanismes
de filtrage efficaces pour récupérer l’uniformité des propriétés dispersives. On analyse la fa-
çon dont les solutions bi-grilles correspondant à plusieurs projections de la grille fine sur
la grossière se divisent en plusieurs paquets d’ondes, chacun se propageant différement.
On représente numériquement ces phénomènes et on montre que ce comportement est en
accord avec les résultats théoriques connus sur la dispersion des solutions bi-grilles.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Dans [6], il a été démontré que les solutions de l’équation de Schrödinger linéaire unidimensionnelle semi-discretisée en
espace par différences finies sur une grille uniforme ne vérifient pas les estimations dispersives de l’équation de Schrödinger
continue (estimations Lq

t − L p
x et gain d’une demi-dérivée localement en espace) uniformément par rapport au pas du

maillage. Ce comportement pathologique est dû à l’existence de points critiques qui annulent l’une des deux premières
dérivées de la relation de dispersion.
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Une manière de récupérer l’uniformité de ces estimations consiste à faire un filtrage bi-grille des données initiales. Ce
mécanisme a été introduit dans le travail pionnier de R. Glowinski [4] sur le filtrage bi-grille pour le contrôle des ondes.
Son efficacité a été démontrée rigureusement dans le contexte des propriétés dispersives de l’équation de Schrödinger
dans [6]. Plus précisement, tout en gardant le schéma d’approximation semi-discret conservatif en différences finies, il
s’agit de considérer uniquement des données initiales dans un maillage quatre fois plus grossier et de les prolonger par
interpolation linéaire sur la grille fine.

Notre objectif principal dans cette Note est d’illustrer numériquement les effets pathologiques des solutions numériques
et d’étudier dans quelle mesure ils disparaissent lorsqu’on applique les mécanismes de filtrage bi-grille.

Nous considérons des données initiales oscillatoires obtenues à partir d’un profil gaussien concentré en Fourier autour
d’un certain nombre d’onde. Afin de comparer les différentes solutions numériques obtenues par le filtrage bi-grille, avant
d’utiliser l’interpolation linéaire pour passer de la maille grossière à la fine, on doit projeter les données initiales du maillage
fin sur le grossier. On le fait de deux manières : d’une part, par restriction des fonctions discrètes aux points du maillage
grossier et, d’autre part, en moyennant les valeurs correspondant aux points de la grille fine situés dans le voisinage de
chaque point dans la grille grossière. La première peut générer, entre autres, des solutions qui n’oscillent pas et ne se
propagent pas, concentrées en Fourier autour du nombre d’onde ξ = 0, donc, régulières. La seconde peut donner lieu à des
solutions tendant vers zéro quand le pas du maillage tend vers zéro.

Dans les deux cas, on constate que ce comportement est compatible avec les propriétés dispersives prouvées dans [6]
pour la méthode de différences finies après le filtrage bimaille.

1. Problem formulation

Let us consider the 1 − d linear continuous Schrödinger equation (CSE):

i∂t u(x, t) + ∂2
x u(x, t) = 0, x ∈ R, t ∈ R \ {0}, u(x,0) = ϕ(x), x ∈ R. (1)

The solution of (1) is given by u(x, t) = S(t)ϕ(x), where S(t) = exp(it∂2
x ) is the Schrödinger semigroup defined as S(t)ϕ(x) =

(G(·, t) ∗ ϕ)(x) and G(x, t) is the fundamental solution of (1).
The solution of (1) verifies two dispersive properties: the gain on the integrability and the local smoothing effect

‖u‖Lq
t (R,L p

x (R)) � c(p)‖ϕ‖L2(R), respectively sup
R

(
1

R

∫
R

R∫
−R

∣∣∂1/2
x u(x, t)

∣∣2
dx dt

)1/2

� c‖ϕ‖L2(R), (2)

for (p,q) such that the admissibility conditions 2 � p � ∞ and 2/q = 1/2 − 1/p hold. For detailed proofs and higher di-
mensional versions of these dispersive estimates, see [8]. They play a key role in the proof of the well-posedness of the
non-linear Schrödinger equation in L2(R) or H1(R) [2,6].

On a uniform grid of size h > 0 of the real line, Gh = {x j = jh: j ∈ Z}, we introduce the discrete Laplacian of the
sequence �f h = ( f j) j∈Z to be ∂2

h f j = h−2( f j+1 − 2 f j + f j−1), and analyze the finite difference semi-discrete Schrödinger
equation (DSE):

i∂t u j(t) + ∂2
h u j(t) = 0, j ∈ Z, t ∈ R \ {0}, u j(0) = ϕ j, j ∈ Z. (3)

Set Πh := [−π/h,π/h]. The solution of (3) can be expressed by means of the inverse semi-discrete Fourier transform
(SDFT) (cf. [6]) as u j(t) = [exp(it∂2

h ) �ϕh] j = 1
2π

∫
Πh

ϕ̂h(ξ)exp(itph(ξ))exp(iξx j)dξ . The symbol ph : Πh → R is defined as

ph(ξ) = 4h−2 sin2(ξh/2) and ϕ̂h is the SDFT at scale h of the initial data �ϕh = (ϕ j) j∈Z .
In the continuous case, the Fourier symbol of the Laplacian is p(ξ) = |ξ |2. Its first-order derivative, the so-called group

velocity, ∂ξ p(ξ) = 2ξ , vanishes only at ξ = 0 and its second-order derivative, the so-called group acceleration, ∂2
ξ p(ξ) = 2,

does not vanish at any wave number. For the semi-discrete case, the following two pathologies of the symbol ph(ξ) were
observed (cf. [6]):

p1. The group velocity, ∂ξ ph(ξ) = 2h−1 sin(ξh), vanishes at ξ = 0, but also at ξ = ±π/h.
p2. The group acceleration, ∂2

ξ ph(ξ) = 2 cos(ξh), vanishes at ξ = ±π/2h.

The pathologies (p1) and (p2) lead to the lack of uniform dispersive properties as h → 0 and, more precisely, to the lack
of local smoothing effects and of discrete Strichartz estimates, respectively (cf. [6]).

Our main goal is to illustrate the effects of these pathologies on the numerical solutions and to analyze to which extent
they disappear when applying the two-grid filtering mechanisms proposed in [6] and inspired by the pioneering work by
R. Glowinski [4] on the bi-grid filtering for the control of waves.

As proved in [6], an efficient mechanism to recover the uniformity as h → 0 of the dispersive properties is the bi-grid
algorithm introduced in [4]. This consists in solving the DSE on the fine grid of size h with slow initial data obtained by
linear interpolation from data given on a coarser grid of size nh. We will take n = 2k , with k � 1. For ratios 1/2k , k � 2,



A. Marica, E. Zuazua / C. R. Acad. Sci. Paris, Ser. I 349 (2011) 105–110 107
between the two grids (the fine one of size h and the coarse one of size 2kh), both pathologies (p1) and (p2) are canceled
and the uniform dispersivity is recovered (cf. [6]).

Define the extension operator Γk : �2(2khZ) → �2(hZ) from the grid of size 2kh to the one of size h, by linear interpola-
tion, as follows: (Γk f )2k j+r = (2k −r)/2k f2k j +r/2k f2k j+2k , for all j ∈ Z and 0 � r � 2k −1. If �f ∈ �2(2khZ), the Fourier trans-

form of this extension can be written as Γ̂k f h(ξ) = bk(ξh) f̂ 2kh(ξ), for all ξ ∈ Πh, with weights bk(η) = ∏k
j=1 cos2(2 j−2η)

vanishing quadratically at η = ± jπ/2k−1, for all 1 � j � 2k−1. The SDFT f̂ 2kh is defined for ξ ∈ Π2kh , but for simplicity, we
also denote in this manner its extension to Πh by π/(2k−1h)-periodicity.

According to [6], when k = 2, i.e. when the ratio between the two meshes is 1/4, and the numerical scheme is restricted
to this class of filtered initial data, the dispersive properties turn out to be uniform as h → 0. More precisely, there exist
two constants C(p), C > 0 independent of h such that the solution �uh(t) = exp(it∂2

h )Γ2 �ϕh verifies∥∥�uh(t)
∥∥

Lq(R,�p(hZ))
� C(p)

∥∥Γ2 �ϕh
∥∥

�2(hZ)
and sup

R>0

1

R

∫
R

h
∑

|x j |�R

∣∣∂1/2
h u j(t)

∣∣2
dt � C

∥∥Γ2 �ϕh
∥∥2

�2(hZ)
.

Here, ∂ s
h denotes the discrete fractional derivative, i.e. ∂ s

h f j = (2π)−1
∫
Πh

ps/2
h (ξ) f̂ h(ξ)exp(iξx j)dξ , with s � 0, and the dis-

crete �p(hZ)-spaces are defined as usual (see, e.g. [6]).
But, in practice, the initial data for the DSE are given on the fine grid of size h as an approximation of the initial datum

of the continuous Schrödinger equation on the nodal points x j = jh. Thus, they need, first, to be projected into the coarse
one. We analyze two different projection operators from Gh to G2kh:

(
Λr

k f
)

2k j = f2k j and
(
Λa

k f
)

2k j =
2k−1∑
r=0

(
2k − r

22k
f2k j+r + r

22k
f2k j+r−2k

)
. (4)

The superscripts r and a stand for restriction and average, the two key mechanisms on which these projections are based.
More precisely, the projection Λr

k restricts the function ( f j) j∈Z on the fine grid to those j-s that are integer multiples of 2k .
The projection Λa

k takes as value at the point x2k j an average of the values at the 2k+1 − 1 points surrounding x2k j in the
fine grid.

These projection operators can be represented in the Fourier space, Π2kh , as follows:

Λ̂r
k f 2kh =

2k−1−1∑
j=−2k−1

f̂ h
(

· + 2 jπ

2kh

)
and Λ̂a

k f 2kh =
2k−1−1∑
j=−2k−1

f̂ h
(

· + 2 jπ

2kh

)
bk

(
· h + 2 jπ

2k

)
. (5)

2. Behavior of solutions under quadratic dispersion relations and Gaussian initial data

Our aim is to describe the behavior of the numerical solutions that the bi-grid algorithm produces when the initial
data on the fine grid is a highly concentrated Gaussian wave packet. For this, we introduce the Gaussian profile σ̂γ (ξ) =√

2π/γ exp(−|ξ |2/(2γ )), where

γ = γ (h) such that γ h2/3 � 1 and γ 	 1. (6)

Consider η0, η1 < η2 ∈ [−π,π ] independent of h and the following function depending on η0, η1, η2, γ :

ϕ̂
η1,η2
η0,γ (ξ) = σ̂γ (ξ − η0/h)χ[η1/h,η2/h](ξ). (7)

For η0 ∈ (−π,π ], ϕ̂η0 represents a Gaussian profile concentrated around η0/h truncated to [η1/h, η2/h] ⊆ Πh . Note that
even for the CSE, for an easier comparison with the DSE, we consider the same initial data supported in Πh in the Fourier
space (see Figs. 1, 2 a) for the cases η0 = π/2 (red), η0 = 2π/3 (green) and η0 = π (blue)).

Taking into account that the dispersion relation of the CSE is quadratic, one can obtain an explicit representation formula
for the corresponding solution uη1,η2

η0,γ . The same can be done, for more general dispersion relations, as it is for instance the
case for the DSE, by taking the second order Taylor expansion. In the purely quadratic case we have:

qη0,h(ξ) = 1

h2
qη0(ξh), with qη0(η) ∼ qη0(η0) + q′

η0
(η0)(η − η0) + 1

2
q′′
η0

(η0)(η − η0)
2. (8)

This, together with the expression of the initial data (7), allows to conclude that:

i. Propagation: uη1,η2
η0,γ propagates along the curve x(t) = x∗ − tq′

η0
(η0)/h.

ii. Time evolution of the support: it expands like (γ −1 + t2γ (q′′
η (η0))

2)1/2.

0
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Fig. 1. a) Initial data ϕ̂η0 with η0 = π,π/2,2π/3 (blue, red, green) and their projections Λ̂r
k

2kh with b) k = 1 and c) k = 2. In black, the corresponding
weights bk . In c), the blue and red curves coincide, so that Λr

2ϕπ = Λr
2ϕπ/2, modulo an exponentially small error. This also means that ϕπ (x4 j) and

ϕπ/2(x4 j) almost coincide.

Fig. 2. a) Initial data ϕ̂η0 with η0 = π,π/2,2π/3 (blue, red, green) and their projections Λ̂a
k

2kh with b) k = 1 and c) k = 2. In black, the corresponding
weights bk . The amplitude of Λa

kϕη0 is smaller than the one of Λr
kϕη0 both in the physical and in the Fourier spaces, since Λa

kϕη0 ∼ bk(η0)Λr
kϕη0 and

bk(η0) < 1. Since b1(π) = 0, the blue curve in b) is almost zero. The red and green ones have amplitude b1(π/2)
√

2π = √
2π/2 and b1(2π/3)

√
2π =√

2π/4. Since b2(π) = b2(π/2) = 0, the blue and red curves in c) coincide and they are almost zero. The corresponding green curve has amplitude
b2(2π/3)

√
2π = √

2π/16.

iii. Time evolution of the amplitude: it behaves like c(1 + t2γ 2(q′′
η0

(η0))
2)−1/4, where c = 1 if η0 �= η1, η2 and c = 1/2 if

η0 = η1 or η0 = η2. For q′′
η0

(η0) �= 0, this large time behavior agrees with the t−1/2-decay rate of the solutions of the

CSE with L1-data (see [6]).

We now consider the CSE with two particular choices of initial data ϕ given in the Fourier space as follows:

ϕ̂π (ξ) = ϕ̂−π,0
−π,γ (ξ) + ϕ̂0,π

π,γ (ξ) or ϕ̂η0(ξ) = ϕ̂−π,π
η0,γ (ξ), η0 ∈ (−π,π). (9)

In (9), we roughly consider initial data as in (7), but with a particular choice of η0, η1 and η2 and with two superposed
Gaussian profiles when they are supported in any of the end points ±π/h. The initial data ϕ̂π , having two picks, seems to
concentrate around two wave numbers, ±π/h, and this occurs in the continuous setting. But in the discrete one, since the
two picks centered at ±π/h are located exactly on the boundary of Πh , by 2π/h-periodicity, they are the two halves of the
same pick. The corresponding solutions have amplitude approximately equal to one in the physical space at t = 0.

Denote by uπ (x, t) and uη0(x, t), η0 ∈ (−π,π), the corresponding solutions of the CSE with initial data (9). Since the
dispersion relation q(η) = η2 for the CSE (1) is quadratic, the results above apply and the solution uπ (x, t) splits into
two blocks, u−π,0

−π,γ (x, t) and u0,π
π,γ (x, t), propagating along x(t) = x∗ ± 2πt/h, whereas uη0 (x, t) propagates along x(t) = x∗ −

2tη0/h.

3. Discrete solutions without filtering

We consider the DSE with initial data as in (9). Since the dispersion relation p(η) = 4 sin2(η/2) is not quadratic,
we cannot apply directly the above results on quadratic dispersions relations, but this can actually be done up to a
small reminder term using the Taylor expansion, as mentioned before. More precisely, for all η0 ∈ Π1, we may split
the dispersion relation as p(η) = qη0 (η) + rη0(η), where qη0 is the second-order Taylor polynomial about η0 and rη0

is the corresponding reminder. Consider the DSE (3) with initial data (7), denote its solution by wη1,η2
η0,γ and split it

as wη1,η2
η0,γ = ũη1,η2

η0,γ + vη1,η2
η0,γ , where ũη1,η2

η0,γ is the solution corresponding to the quadratic dispersion relation qη0 . It is
easy to check that ‖vη1,η2

η0,γ ‖2
L2

x (R)
/‖wη1,η2

η0,γ ‖L2
x (R) = O (thγ 3/2), which is small in finite time intervals iff (6) holds, so that

wη1,η2
η0,γ ∼ ũη1,η2

η0,γ .
Denote by wπ (x, t) and wη0(x, t) the solutions of the DSE with initial data (9). Since p′(π) = 0, the solution wπ does

not propagate, illustrating the lack of uniform local smoothing effect in the discrete case (see Fig. 3 – c), the blue curve).
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Fig. 3. Solutions of both CSE and DSE in the physical space corresponding to the initial data ϕ̂η0 using the projections Λα
k , α = r,a, with a) (η0,α) =

(π/2, r), b) (η0,α) = (π/2,a), c) (η0,α) = (π, r) and d) (η0,α) = (2π/3, r). Legend: green – solution of CSE at t = 0, magenta – solution of CSE at t = 1,
blue – solution of DSE without filtering at t = 1, red – solution of DSE with bi-grid of ratio 1/2 (k = 1) at t = 1 and black – solution of DSE with bi-grid
of ratio 1/4 (k = 2) at t = 1. Description: a) the red wave packets have amplitude b1(π/2) = 1/2; b) the red wave packets have amplitude b2

1(π/2) = 1/4
and the black one has amplitude b2(π/2) = 0; c) the red and black wave packets coincide; d) in green, the initial datum is asymmetric with respect
to the horizontal axis. This is an effect of the projection of the continuous initial datum into the grid. The real part of the continuous initial datum is
essentially cos(2πx/(3h))exp(−γ x2/2), with γ = h−1/4, which is symmetric, indeed. But, when sampled on x = ( jh) j∈Z , then, for j = 0, its amplitude
is 1, but, for j = 1, it is cos(2π/3) = − sin(π/6) = −1/2. This explains the asymmetry of the discrete plot of the datum; the red wave packets have
amplitude b1(2π/3) = 1/4 and b1(−π/3) = 3/4. The black ones have amplitude b2(2π/3) = 1/16, b2(π/6) = (6 + 3

√
3)/16, b2(−5π/6) = (6 − 3

√
3)/16

and b2(−π/3) = 3/16.

For η0 = π/2, since p′′(π/2) = 0, the spatial support of wπ/2 does not expand as time evolves, which agrees with the lack
of uniform Lq

t �
p
x -integrability properties (see Fig. 3 – a) and b), the blue curve).

4. Bi-grid solutions

For the DSE, we now consider initial data obtained by firstly projecting the data (9) from the fine grid to the coarse one
by one of the two projections (4) and then extending those projections by linear interpolation from the grid of size 2kh to
the one of size h. We identify several different cases:

A) η0 = π , α = r. In the Fourier space, the projection Λr
kϕπ has picks at 2lπ/2kh, for 0 � |l| � 2k−1. The picks at 2lπ/2kh,

1 � |l| � 2k−1, are canceled as h → 0 since the weight bk vanishes exactly at those points. The wave packet for l = 0, being
located at ξ = 0, does not propagate, but it does not oscillate either and the discrete smoothing property holds uniformly as
h → 0 (see Fig. 3 – c), the black curve, for (η0,k) = (π,2)). This packet also decays with the rate of the CSE since both
dispersion relations (continuous and discrete one) are tangent at ξ = 0.

B) η0 ∈ ((2l∗ −1)π/2k, (2l∗ +1)π/2k), for some −2k−1 +1 � l∗ � 2k−1 −1, α = r. Set η∗
0 := η0 −2l∗π/2k ∈ Π2kh . Similarly,

if η0 ∈ (−π,−(2k − 1)π/2k) ∪ ((2k − 1)π/2k,π), set η∗
0 := η0 ± π . There are two cases: i) η∗

0 = 0. Then the projection
Λr

kϕη0 has picks in the Fourier space at ξ = 2lπ/(2kh), with 0 � |l| � 2k−1 and the analysis follows the one in part A) (see
Fig. 3 – a), for (η0 = π/2,k = 2)); ii) η∗

0 ∈ (−π/2k,π/2k) \ {0}. Then the projection Λr
kϕη0 has picks in the Fourier space at

(η∗
0 + 2lπ/2k)/h, where −2k−1 + 1 − s � l � 2k−1 − s and s = (1 + sign(η∗

0))/2. The solution wr
η0,k is a superposition of 2k

wave packets propagating along the lines x(t) = x∗ −tvl with velocity vl = 2 sin(η∗
0 +2lπ/2k)/h. Observe that vl = −v−2k−1+l ,

1 − s � l � 2k−1 − s, i.e. there are 2k−1 pairs of wave packets constituted by one wave packet going in each direction with
the same velocity, and v1−s < v2k−1−s < v2−s < v2k−1−1−s < · · · < v2k−2−s < v2k−2+1−s . If sign(η0) �= sign(η∗

0), then the wave
packet of largest amplitude changes the direction with respect to the solution without filtering (see Fig. 3 – d), the red
curve, for (η0,k) = (2π/3,1)). In this case, the dispersive properties are verified uniformly.

C) η0 = (2l∗ + 1)/2k , for some −2k−1 � l∗ � 2k−1 − 1, α = r. Then the projection Λr
kϕη0 has picks in the Fourier space

at ξ = (2l + 1)π/(2kh), for all −2k−1 � l � 2k−1 − 1. The solution wr
η0,k is a superposition of 2k wave packets, each one

propagating along the line x(t) = x∗ − tvl with velocity vl = 2 sin((2l − 1)π/2k)/h. With respect to B) – ii., we have vl =
v2k−1+1−l for all 1 � l � 2k−2, i.e. the 2k−1 wave packets going to the left can be grouped into 2k−2 pairs constituted by two
wave packets having the same velocity which collapse at any time t > 0, and v1 < v2 < · · · < v2k−2 . For (η0,k) = (π/2,1),
the two blocks in the solution do not spread as time evolves (see Fig. 3 – a), the red curve), which confirms the fact that
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the bi-grid algorithm with ratio 1/2 is not enough to reestablish the uniformity of the dispersive estimates, as predicted by
the theory in [6].

D) α = a, η0 ∈ (−π,π ]. Remark that Λa
kϕη0 ∼ bk(η0)Λ

r
kϕη0 . Then: i) the solutions corresponding to Λa

k are of smaller
amplitude than those corresponding to Λr

k , because they involve the factor bk(η0) < 1 (see the red curves in Fig. 3 –
a) and b)); ii) when η0 is such that bk(η0) = 0, the projection Λa

k is too strong, in the sense that the corresponding
numerical solutions tends to zero as h → 0 (see Fig. 2 – b), the blue curve for (η0,k) = (π,1), or c), the blue/red curves, for
(η0,k) = (π,2), (π/2,2). Also the black curve in Fig. 3 – a), for (η0,k) = (π/2,2)). The cancellations can be explained by
the fact that for plane waves of the form ϕ j = exp(iη0 j), j ∈ Z, the identity Λa

k �ϕh ≡ 0 holds.

5. Conclusions

In this article, some subtle phenomena related to the dispersivity (and the lack of) have been described in the context
of the Schrödinger equation and its numerical approximation schemes. We have shown that, choosing appropriate high
frequency wave packets, one may confirm the predictions of the theory (cf. [6]) and gain new insight about the complex
behavior of such solutions which, depending on the high-frequency around which they concentrate, may or not propagate,
or propagate but not disperse. We also analyze and describe how these solutions are affected by the application of bi-grid
filtering techniques. The bi-grid solutions can be decomposed into several wave packets moving at different velocities. Some
of them are attenuated by the bi-grid weights or by the way one projects the initial data from the fine grid to the coarse
one. In this way, the bi-grid mechanisms may yield non-oscillatory, smooth solutions or solutions vanishing as h → 0, even if
the original initial data do not have those behaviors. Our numerical simulations confirm the predictions of the theory in [6],
in the sense that the bi-grid technique, implemented with mesh-ratio 1/4, ensures the dispersive properties of numerical
solutions.

6. Open problems

There are several issues, related to those treated in this Note, worth to be explored: i) So far we have plotted solutions
based on their Fourier description. It would be interesting to do the same, but using numerical approximations schemes. But
then one has to take into account the changes that the time discretizations (cf. [6]) or some kind of boundary conditions, for
example the transparent ones (cf. [1]), could introduce in the dispersive properties; ii) The relevance of these high frequency
phenomena is still to be explored in the context of the non-linear Schrödinger equations. The theoretical results in [7] show
that dispersive schemes ensure a polynomial convergence order which improves the logarithmic one gets for standard finite-
difference schemes by energy methods. Also the effect of splitting methods [5,3] on these high frequency wave packets is
worth investigating; iii) The issues addressed in this Note are totally open for non-uniform grids or Schrödinger equations
in heterogeneous media.

Acknowledgements

Both authors were partially supported by the Grant MTM2008-03541 of the MICINN, Spain, project PI2010-04 of the
Basque Government and the ERC Advanced Grant FP7-246775 NUMERIWAVES.

References

[1] A. Arnold, M. Ehrhardt, I. Sofronov, Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation and stability,
Comm. Math. Sci. 1 (3) (2003) 501–556.

[2] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, AMS, New York, 2003.
[3] E. Faou, B. Grébert, Hamiltonian interpolation of splitting approximations for nonlinear PDEs, preprint.
[4] R. Glowinski, Ensuring the well-posedness by analogy; Stokes problem and boundary control for the wave equation, Journal of Computational

Physics 103 (2) (1992) 189–221.
[5] L. Ignat, A splitting method for the non-linear Schrödinger equation, preprint.
[6] L. Ignat, E. Zuazua, Numerical dispersive schemes for the nonlinear Schrödinger equation, SIAM J. Numer. Anal. 47 (2) (2009) 1366–1390.
[7] L. Ignat, E. Zuazua, Convergence rates for dispersive approximation schemes for non-linear Schrödinger equations, preprint.
[8] C.K. Linares, G. Ponce, Introduction to Nonlinear Dispersive Equations, Springer, 2009.


	High frequency wave packets for the Schrödinger equation and its numerical approximations
	Version française abrégée
	Problem formulation
	Behavior of solutions under quadratic dispersion relations and Gaussian initial data
	Discrete solutions without ﬁltering
	Bi-grid solutions
	Conclusions
	Open problems
	Acknowledgements
	References


