Partial Differential Equations/Mathematical Problems in Mechanics

The div-curl lemma for sequences whose divergence and curl are compact in $W^{-1,1}$

Le lemme div-rot pour les suites dont la divergence et la boucle sont bornées dans $W^{-1,1}$

Sergio Conti ${ }^{\text {a }}$, Georg Dolzmann ${ }^{\text {b }}$, Stefan Müller ${ }^{\text {a, }}{ }^{c}$
${ }^{\text {a }}$ Institut für Angewandte Mathematik, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
${ }^{\text {b }}$ Universität Regensburg, 93040 Regensburg, Germany
${ }^{\text {c }}$ Hausdorff Center for Mathematics, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

ARTICLE INFO

Article history:

Received 12 July 2009
Accepted after revision 23 March 2010
Available online 3 January 2011
Presented by John M. Ball

Abstract

It is shown that $u_{k} \cdot v_{k}$ converges weakly to $u \cdot v$ if $u_{k} \rightharpoonup u$ weakly in L^{p} and $v_{k} \rightharpoonup v$ weakly in L^{q} with $p, q \in(1, \infty), 1 / p+1 / q=1$, under the additional assumptions that the sequences $\operatorname{div} u_{k}$ and curl v_{k} are compact in the dual space of $W_{0}^{1, \infty}$ and that $u_{k} \cdot v_{k}$ is equi-integrable. The main point is that we only require equi-integrability of the scalar product $u_{k} \cdot v_{k}$ and not of the individual sequences. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{R É S U M É}

On montre que $u_{k} \cdot v_{k}$ converge faiblement vers $u \cdot v$ si $u_{k} \rightharpoonup u$ faiblement dans $L^{p}, v_{k} \rightharpoonup v$ faiblement dans L^{q}, les séquences $\operatorname{div} u_{k}$ et rot v_{k} sont compactes dans l'espace dual de $W_{0}^{1, \infty}$ et $u_{k} \cdot v_{k}$ est équi-intégrable, pour $p, q \in(1, \infty), 1 / p+1 / q=1$. En effet, on n'utilise que l'équi-intégrabilité du produit scalaire $u_{k} \cdot v_{k}$, et non pas celle de chacune des suites. © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Statement of the theorem

The div-curl lemma is the cornerstone of the theory of compensated compactness which was developed by Murat and Tartar in the late seventies [14,15,17-19], and is still a very active area of research [6]. In its classical form the lemma states the following: if $\left\{u_{k}\right\}_{k \in \mathbb{N}}$ and $\left\{v_{k}\right\}_{k \in \mathbb{N}}$ are sequences in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ which converge weakly in $L^{2}\left(\Omega ; \mathbb{R}^{n}\right)$ to u and v, respectively, and if $\operatorname{div} u_{k}$ is compact in $H^{-1}(\Omega)$ and curl v_{k} is compact in $H^{-1}\left(\Omega ; \mathbb{M}^{n \times n}\right)$, then

$$
u_{k} \cdot v_{k} \rightharpoonup u \cdot v \quad \text { in } \mathcal{D}^{\prime}(\Omega)
$$

A natural generalization concerned sequences bounded in $L^{p}\left(\Omega ; \mathbb{R}^{n}\right)$ and $L^{q}\left(\Omega ; \mathbb{R}^{n}\right)$, respectively, where $p, q \in(1, \infty)$ are dual exponents, $1 / p+1 / q=1$, $\operatorname{div} u_{k}$ is compact in $W^{-1, p}(\Omega)$ and curl v_{k} is compact in $W^{-1, q}\left(\Omega ; \mathbb{M}^{n \times n}\right)$, respectively, see [15]. Important connections to Hardy spaces were established in [8], and an application to pairings between L^{∞} vector fields and measures was developed in [3].

This Note is inspired by questions in nonlinear models in crystal plasticity [9] in a two-dimensional setting. The key point in this context is to prove that the determinant of the deformation gradient $\operatorname{det} \nabla \varphi_{k}$ converges to det $\nabla \varphi$ under the

[^0]assumption that $\nabla \varphi_{k}=G_{k}+B_{k}$ where $G_{k} \rightharpoonup \nabla \varphi$ weakly in L^{2} and $B_{k} \rightarrow 0$ strongly in L^{1}. The key additional information is that det $\nabla \varphi_{k}$ is compact in L^{1}.

Motivated by this application, we present a generalization of the div-curl lemma with very weak assumptions on div u_{k} and curl v_{k} and the additional assumption that $u_{k} \cdot v_{k}$ is equi-integrable (see the remarks after the theorem). We denote the dual of $W_{0}^{1, \infty}(\Omega)$ by $W^{-1,1}(\Omega)$.

Theorem. Let $\Omega \subset \mathbb{R}^{n}$ be an open and bounded domain with Lipschitz boundary and let $p, q \in(1, \infty)$ with $1 / p+1 / q=1$. Suppose $u_{k} \in L^{p}\left(\Omega ; \mathbb{R}^{n}\right), v_{k} \in L^{q}\left(\Omega ; \mathbb{R}^{n}\right)$ are sequences such that

$$
\begin{equation*}
u_{k} \rightharpoonup u \quad \text { weakly in } L^{p}\left(\Omega ; \mathbb{R}^{n}\right) \quad \text { and } \quad v_{k} \rightharpoonup v \text { weakly in } L^{q}\left(\Omega ; \mathbb{R}^{n}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{k} \cdot v_{k} \text { is equi-integrable. } \tag{2}
\end{equation*}
$$

Finally assume that

$$
\begin{equation*}
\operatorname{div} u_{k} \rightarrow \operatorname{div} u \quad \text { in } W^{-1,1}(\Omega) \quad \text { and } \quad \operatorname{curl} v_{k} \rightarrow \operatorname{curl} v \quad \text { in } W^{-1,1}\left(\Omega ; \mathbb{M}^{n \times n}\right) \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
u_{k} \cdot v_{k} \rightharpoonup u \cdot v \quad \text { weakly in } L^{1}(\Omega) \tag{4}
\end{equation*}
$$

Remarks.

(i) The statement is almost classical under the stronger hypothesis that $\left|u_{k}\right|^{p}$ and $\left|v_{k}\right|^{q}$ are equi-integrable (see the lemma below). The main novelty is that here we require only that $u_{k} \cdot v_{k}$ is equi-integrable, and this is crucial for the application in [9].
(ii) The assumption that the inner product $u_{k} \cdot v_{k}$ is equi-integrable is necessary as can be seen from the one-dimensional example of a Fakir's carpet. Let $u_{k}=v_{k}$ be given on the unit interval by $u_{k}=\sqrt{k} \sum_{\ell=1}^{k} \chi_{\left[\ell / k, k^{-2}+\ell / k\right]}$. Then u_{k} converges to zero weakly in $L^{2}(0,1)$ and strongly in $L^{1}(0,1)$, but u_{k}^{2} converges to one in the sense of distributions.

The crucial observation in the proof is the fact that given (2) we can construct modified sequences \tilde{u}_{k} and \tilde{v}_{k} such that $\tilde{u}_{k} \cdot \tilde{v}_{k}$ has the same weak limit as $u_{k} \cdot v_{k}$ and the sequences $\left|u_{k}\right|^{p}$ and $\left|v_{k}\right|^{q}$ are equi-integrable and therefore compact in $W^{-1, p}$ and $W^{-1, q}$, respectively. The sequences are constructed using the biting lemma [7,4] and Lipschitz truncations of Sobolev functions which originate in the work of Liu [12] and Acerbi and Fusco [1,2] and have found important applications in the vector-valued calculus of variations, see, e.g., $[5,20,13]$.

In two dimensions, a change of variables leads to weak continuity of the determinant:
Corollary. Let $\Omega \subset \mathbb{R}^{2}$ be an open and bounded domain with Lipschitz boundary, and let $\varphi_{k} \in W^{1,1}\left(\Omega ; \mathbb{R}^{2}\right)$ be such that $\nabla \varphi_{k}=$ $G^{k}+B^{k}$, with $B^{k} \rightarrow 0$ strongly in L^{1} and $G^{k} \rightharpoonup G$ weakly in L^{2}. If the sequence $\operatorname{det} \nabla \varphi_{k}$ is equi-integrable, then $\operatorname{det} \nabla \varphi_{k} \rightharpoonup \operatorname{det} G$ weakly in L^{1}.

2. Proofs

We begin with the proof of the lemma that shows how equi-integrability of $\left|u_{k}\right|^{p}$ leads to compactness of div u_{k}. We say that a sequence $u_{k} \in L^{p}\left(\Omega ; \mathbb{R}^{n}\right)$ is L^{p}-equi-integrable if there is an increasing function $\omega:[0, \infty) \rightarrow \mathbb{R}$ with $\lim _{t \rightarrow 0} \omega(t)=0$, such that

$$
\begin{equation*}
\int_{A}\left|u_{k}\right|^{p} \mathrm{~d} x \leqslant \omega(t) \quad \text { for all } A \subset \Omega \text { measurable with }|A| \leqslant t \tag{5}
\end{equation*}
$$

Lemma. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded Lipschitz set, $1<p<\infty$, and let $u_{k} \in L^{p}\left(\Omega ; \mathbb{R}^{n}\right)$ be an L^{p}-equi-integrable sequence. If $\operatorname{div} u_{k} \rightarrow 0$ in $W^{-1,1}(\Omega)$, then $\operatorname{div} u_{k} \rightarrow 0$ in $W^{-1, p}(\Omega)$. The analogous statements hold for curl u_{k} and ∇u_{k}.

Proof. Let ω be as in (5). By definition and density of $C_{0}^{\infty}(\Omega)$ in $W_{0}^{1, q}(\Omega)$,

$$
\begin{equation*}
\left\|\operatorname{div} u_{k}\right\|_{W^{-1, p}(\Omega)}=\sup \left\{\int_{\Omega} \nabla \varphi \cdot u_{k} \mathrm{~d} x: \varphi \in C_{0}^{\infty}(\Omega), \int_{\Omega}|\nabla \varphi|^{q} \mathrm{~d} x \leqslant 1\right\} \tag{6}
\end{equation*}
$$

where q is given by $1 / p+1 / q=1$. Fix $\varphi \in C_{0}^{\infty}(\Omega)$ with $\|\nabla \varphi\|_{q} \leqslant 1$ and $t>0$. By the truncation argument in [10, Lemma 4.1] or [11, Proposition A.2] there is a t-Lipschitz function $\psi \in W_{0}^{1, \infty}(\Omega)$ such that the measure of the set $M=\{\psi \neq \varphi$ or $\nabla \psi \neq$ $\nabla \varphi\}$ is bounded by c_{*} / t^{q}, where c_{*} depends only on Ω. We decompose

$$
\begin{equation*}
\int_{\Omega} \nabla \varphi \cdot u_{k} \mathrm{~d} x=\int_{\Omega}(\nabla \varphi-\nabla \psi) \cdot u_{k} \mathrm{~d} x+\int_{\Omega} \nabla \psi \cdot u_{k} \mathrm{~d} x \tag{7}
\end{equation*}
$$

The second term is bounded by $\|\nabla \psi\|_{L^{\infty} \|} \operatorname{div} u_{k} \|_{W^{-1,1}}$. The first term is concentrated on the set M, and by Hölder's inequality can be estimated by

$$
\begin{equation*}
\int_{M}(\nabla \varphi-\nabla \psi) \cdot u_{k} \mathrm{~d} x \leqslant\left(\int_{M}(|\nabla \varphi|+t)^{q} \mathrm{~d} x\right)^{1 / q}\left(\int_{M}\left|u_{k}\right|^{p} \mathrm{~d} x\right)^{1 / p} . \tag{8}
\end{equation*}
$$

The first factor is bounded by $\|\nabla \varphi\|_{L^{q}(M)}+|M|^{1 / q} t \leqslant 1+c_{*}^{1 / q}$, the second by $\left(\omega\left(c_{*} t^{-q}\right)\right)^{1 / p}$ in view of the equi-integrability of the sequence $\left|u_{k}\right|^{p}$, and we conclude that

$$
\begin{equation*}
\left\|\operatorname{div} u_{k}\right\|_{W^{-1, p}(\Omega)} \leqslant\left(1+c_{*}^{1 / q}\right)\left(\omega\left(c_{*} t^{-q}\right)\right)^{1 / p}+t\left\|\operatorname{div} u_{k}\right\|_{W^{-1,1}(\Omega)} \tag{9}
\end{equation*}
$$

with ω as in (5). The assertion follows with $t=\left\|\operatorname{div} u_{k}\right\|_{W^{-1,1}(\Omega)}^{-1 / 2}$.
Proof of the theorem. We divide the proof into four steps. The first three treat the case $u=v=0$.

Step 1. Modification of u_{k} and v_{k} to obtain L^{p} - and L^{q}-equi-integrable sequences, respectively. The sequence $\left|u_{k}\right|^{p}$ is bounded in L^{1}, and therefore the biting lemma [4,16] implies the existence of a sequence of sets $A_{k} \subset \Omega$ such that $\left|A_{k}\right| \rightarrow 0$ and, after extracting a subsequence, $\left|u_{k}\right|^{p} \chi_{\Omega \backslash A_{k}}$ is equi-integrable. Set $\tilde{u}_{k}=u_{k} \chi_{\Omega \backslash A_{k}}$. Since $\left\|\tilde{u}_{k}-u_{k}\right\|_{L^{1}(\Omega)}=\left\|u_{k}\right\|_{L^{1}\left(A_{k}\right)} \leqslant$ $\left|A_{k}\right|^{1 / q}\left\|u_{k}\right\|_{L^{p}(\Omega)}$ it follows that

$$
\begin{equation*}
\tilde{u}_{k}-u_{k} \rightarrow 0 \quad \text { in } L^{1}(\Omega) \tag{10}
\end{equation*}
$$

Therefore the two sequences u_{k}, \tilde{u}_{k} have the same weak limit (in L^{p}). Furthermore, $\nabla\left(\tilde{u}_{k}-u_{k}\right) \rightarrow 0$ in $W^{-1,1}\left(\Omega ; \mathbb{M}^{n \times n}\right)$, and therefore $\operatorname{div} \tilde{u}_{k} \rightarrow 0$ in $W^{-1,1}(\Omega)$. One proceeds analogously with v_{k}, obtains the corresponding sets B_{k} and a sequence $\tilde{v}_{k}=v_{k} \chi_{\Omega \backslash B_{k}}$. To conclude this step it remains to prove that $u_{k} \cdot v_{k}-\tilde{u}_{k} \cdot \tilde{v}_{k} \rightharpoonup 0$ in L^{1}. To see this, we observe that this expression vanishes outside of $A_{k} \cup B_{k}$, and that it equals $u_{k} \cdot v_{k}$ on this set. By equi-integrability of $u_{k} \cdot v_{k}$ and the fact that $\left|A_{k} \cup B_{k}\right| \rightarrow 0$, we conclude that $u_{k} \cdot v_{k}-\tilde{u}_{k} \cdot \tilde{v}_{k} \rightarrow 0$ in L^{1}.

Step 2. Strong $W^{-1, p}$ convergence and reduction to the classical div-curl lemma. The sequence \tilde{u}_{k} is L^{p}-equi-integrable, and its divergence converges strongly to zero in $W^{-1,1}$. Therefore by the lemma we obtain that $\operatorname{div} \tilde{u}_{k} \rightarrow 0$ in $W^{-1, p}(\Omega)$. Analogously one shows that curl $\tilde{v}_{k} \rightarrow 0$ in $W^{-1, q}(\Omega)$. By the classical div-curl lemma we then conclude that $\tilde{u}_{k} \cdot \tilde{v}_{k} \xrightarrow{*} 0$ in $\mathcal{D}^{\prime}(\Omega)$.

Step 3. Identification of the L^{1}-weak limit. Since the sequence $u_{k} \cdot v_{k}$ is by assumption equi-integrable it has a subsequence which converges weakly in L^{1}. The same holds for $\widetilde{u}_{k} \cdot \widetilde{v}_{k}$. But the two limits are the same (Step 1) and the latter is zero (Step 2). Since the limit does not depend on the subsequence, the entire sequence converges. This concludes the proof if $u=v=0$.

Step 4. General case. We set $\tilde{u}_{k}=u_{k}-u, \tilde{v}_{k}=v_{k}-v$. Equi-integrability of the sequence $\tilde{u}_{k} \cdot \tilde{v}_{k}$ follows from $\int_{A}\left|u_{k} \cdot v\right| \mathrm{d} x \leqslant$ $\left\|u_{k}\right\|_{L^{p}(\Omega)}\|v\|_{L^{q}(A)}$ for all $A \subset \Omega$ (and analogously for $u \cdot v_{k}$). By Steps $1-3, \tilde{u}_{k} \cdot \tilde{v}_{k} \rightharpoonup 0$ weakly in $L^{1}(\Omega)$. The proof is concluded observing that $u_{k} \cdot v$ and $u \cdot v_{k}$ converge weakly in L^{1} to $u \cdot v$.

Proof of the corollary. Let $u_{k}=\left(e_{1} \cdot G^{k}\right)^{\perp}=\left(-G_{12}^{k}, G_{11}^{k}\right), v_{k}=e_{2} \cdot G^{k}=\left(G_{21}^{k}, G_{22}^{k}\right)$, so that $\operatorname{det} G^{k}=u_{k} \cdot v_{k}$. Since $G^{k}+B^{k}$ is a gradient, $\operatorname{div} u_{k}=\partial_{1} B_{12}^{k}-\partial_{2} B_{11}^{k}$, and therefore $\left\|\operatorname{div} u_{k}\right\|_{W-1,1} \leqslant\left\|B_{k}\right\|_{L^{1}} \rightarrow 0$. The same estimate holds for curl v_{k}. At this point the corollary follows from the theorem.

Acknowledgements

This work was partially supported by the Deutsche Forschungsgemeinschaft through FOR 797 Analysis and computation of microstructure in finite plasticity, projects Co304/4-1, Do633/2-1, Mu1067/9-1.

References

[1] E. Acerbi, N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal. 86 (1984) 125-145.
[2] E. Acerbi, N. Fusco, An approximation lemma for $W^{1, p}$ functions, in: J.M. Ball (Ed.), Material Instabilities in Continuum Mechanics and Related Mathematical Problems, Oxford Univ. Press, 1988, pp. 1-5.
[3] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4) 135 (1983) $293-318$.
[4] J.M. Ball, F. Murat, Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc. 107 (1989) 655-663.
[5] J.M. Ball, K.-W. Zhang, Lower semicontinuity of multiple integrals and the biting lemma, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990) $367-379$.
[6] M. Briane, J. Casado-Díaz, F. Murat, The div-curl lemma "trente ans après" an extension and an application to the G-convergence of unbounded monotone operators, J. Math. Pures Appl. 91 (2009) 476-494.
[7] J.K. Brooks, R.V. Chacon, Continuity and compactness of measures, Adv. in Math. 37 (1980) 16-26.
[8] R. Coifman, P.-L. Lions, Y. Meyer, S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993) $247-286$.
[9] S. Conti, G. Dolzmann, C. Kreisbeck, Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity, 2010, preprint.
[10] G. Dolzmann, N. Hungerbühler, S. Müller, Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side, J. Reine Angew. Math. 520 (2000) 1-35.
[11] G. Friesecke, R. James, S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math. 55 (2002) 1461-1506.
[12] F.-C. Liu, A Luzin type property of Sobolev functions, Indiana Univ. Math. J. 26 (1977) 645-651.
[13] S. Müller, A sharp version of Zhang's theorem on truncating sequences of gradients, Trans. Amer. Math. Soc. 351 (1999) $4585-4597$.
[14] F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 5 (1978) 489-507.
[15] F. Murat, Compacité par compensation : condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 8 (1981) 69-102.
[16] M. Saadoune, M. Valadier, Extraction of a "good" subsequence from a bounded sequence of integrable functions, J. Convex Anal. 2 (1995) $345-357$.
[17] L. Tartar Une nouvelle méthode de résolution d'équations aux dérivées partielles non linéaires, in: Journ. d'Anal. non lin., Proc., Besancon, 1977, in: Lect. Notes Math., vol. 665, 1978, pp. 228-241.
[18] L. Tartar, Compensated compactness and applications to partial differential equations, in: Nonlinear Analysis and Mechanics: Heriot-Watt Symp., vol. 4, in: Edinburgh Res. Notes Math., vol. 39, 1979, pp. 136-212.
[19] L. Tartar, The compensated compactness method applied to systems of conservation laws, in: Systems of Nonlinear Partial Differential Equations, Oxford, 1982, in: NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 111, Reidel, Dordrecht, 1983, pp. 263-285.
[20] K. Zhang, A construction of quasiconvex functions with linear growth at infinity, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) 19 (1992) $313-326$.

[^0]: E-mail addresses: sergio.conti@uni-bonn.de (S. Conti), georg.dolzmann@mathematik.uni-regensburg.de (G. Dolzmann), sm@hcm.uni-bonn.de (S. Müller).
 1631-073X/\$ - see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 doi:10.1016/j.crma.2010.11.013

