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The structure of positive polynomials on a torus is derived from recent results of real al-
gebraic geometry. As an application, we propose some simple conditions for testing the
hyperbolicity/stability of a generic class of linear systems of retarded type.
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r é s u m é

La structure des polynômes positifs sur un tore est déduite à l’aide de deux théorèmes
récents de type Positivstellensatz. Comme application, on propose des conditions simples
pour vérifier l’hyperbolicité/stabilité d’un système linéaire générique d’équations différen-
tielles de type retardé.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The last decade has witnessed a proliferation of applications of real algebraic geometry to non-linear optimization, see
the volumes [4,17]. The present Note is aligned with this trend, by importing two basic facts about the existence of algebraic
certificates for the non-emptiness of a semi-algebraic set, into the area of stability of linear systems of delay differential
equations.

To recall a few basic algebraic facts, we start with a commutative algebra A with unit, over the rational field. A quadratic
module Q ⊂ A is a subset of A such that Q + Q ⊂ Q ,1 ∈ Q and a2 Q ⊂ A for all a ∈ A. We denote by Q (F ; A) or simply
Q (F ) the quadratic module generated in A by the set F . That is Q (F ; A) is the smallest subset of A which is closed under
addition and multiplication by squares a2, a ∈ A, containing F and the unit 1 ∈ A. If F is finite, we say that the quadratic
module is finitely generated. A quadratic module which is also closed under multiplication is called a quadratic preordering.
The preordering generated by a set F will be denoted PO(F ; A) or simply PO(F ). Finally, for a set F ⊂ A we write (F ) for
the ideal generated by F , while MON(F ) stands for the multiplicative monoid with unit generated by F . A quadratic module
Q is called archimedean if the constant function 1 belongs to its algebraic interior, that is, for every f ∈ Q there exists ε > 0
such that 1 + t f ∈ Q for all 0 � t � ε.

Assume that A = R[x1, . . . , xd] is the polynomial algebra. The positivity set P (Q ) of Q ⊂ R[x1, . . . , xd] is the set of all
points x ∈ R

d for which q(x) � 0, q ∈ Q . If Q is an archimedean quadratic module in R[x1, . . . , xd], then there exists ε > 0,
such that 1 − ε(x2

1 + · · · + x2
d) ∈ Q , that is the set P (Q ) is necessarily compact. For the aims of this note, two results stand

aside. First is a Positivstellensatz due to Stengle, see [15].

✩ Partially supported by CNRS, France and the National Science Foundation, USA.
E-mail addresses: Silviu.Niculescu@lss.supelec.fr (S.-I. Niculescu), mputinar@math.ucsb.edu (M. Putinar).
URLs: http://silviu.niculescu.lss.supelec.fr (S.-I. Niculescu), http://www.math.ucsb.edu/~mputinar (M. Putinar).
1631-073X/$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2010.11.018

http://dx.doi.org/10.1016/j.crma.2010.11.018
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:Silviu.Niculescu@lss.supelec.fr
mailto:mputinar@math.ucsb.edu
http://silviu.niculescu.lss.supelec.fr
http://www.math.ucsb.edu/~mputinar
http://dx.doi.org/10.1016/j.crma.2010.11.018


328 S.-I. Niculescu, M. Putinar / C. R. Acad. Sci. Paris, Ser. I 349 (2011) 327–329
Theorem 1.1. (See [18].) Let P i , i ∈ I; Q j , j ∈ J ; Rk, k ∈ K , be finite sets of polynomials in R[x1, . . . , xd]. The set {x ∈ R
d;

Pi(x) � 0, ∀i ∈ I, Q j(x) = 0, ∀ j ∈ J , Rk(x) �= 0, ∀k ∈ K } is empty if and only if there exists f ∈ PO(Pi), g ∈ (Q j) and h ∈ MON(Rk),

such that f + h2 = g.

Second is a partial refinement of the above general fact, with preorders replaced by quadratic modules.

Theorem 1.2. (See [16].) Let Q ⊂ R[x1, . . . , xd] be an archimedean quadratic module and assume that a polynomial f is positive on
P (Q ). Then f ∈ Q .

The latter theorem was recently generalized to algebras of non-polynomial functions on Euclidean space [9]. This exten-
sion will also be relevant to our study.

Consider now a pair (M, τ ), where M = [A0 A1 · · · Am] ∈ R
n2(m+1) denotes a set of (m + 1) real n × n matrices and

τ = [τ1 · · ·τnd ] ∈ R
nd+ a delay vector for some positive integers nd and m. For an indexed set I ⊂ N

nd , we introduce a delay
system of retarded type at (M, τ ) by the following functional differential equation:

ẋ(t) =
m∑

k=0

Akx(t − γk · τ ), (1)

under appropriate initial conditions (see, e.g. [2,11]). Here, γk · τ denotes the standard inner product with γk ∈ I and
k = 0, . . . ,m. Without any loss of generality, we assume that γ0 · τ = 0, and that all the others are non-zero. Introduce now
the following characteristic functions associated to (1):

fτ (s; M, τ ) := det

(
sIn − A0 −

m∑
k=1

Ake−sγk·τ
)

, f z(s; M, z) := det

(
sIn − A0 −

m∑
k=1

Akzγ1
1 · · · z

γnd
nd

)
, (2)

where z = [z1, . . . , zm] ∈ T
m , the unit torus of dimension m. Next, for a matrix N ∈ R

n2
, denote σ(N) its spectrum. Fur-

thermore, denote by σ(M, τ ) and σ(M, z) the spectra of the corresponding operators in (2). The link between fτ and f z

becomes clear when s = jω ( j = √−1) for some ω ∈ R and by identifying zk = e− jωτk , for all k = 1, . . . ,m. The relation
between the corresponding spectra and the stability of delay systems was discussed in [6,5,12,11], in simpler cases by using
the idea that s and e−s are independent algebraic variables. It is worth to mention that the link between quasipolynomi-
als and polynomials over rings of operators was subject of recurring interest since the 70s, see for instance [7] for some
fundamental results or [6] for some interpretations in the (exponential) stability case or, [1] for related structural properties.

With the notations above, the system (1) is called hyperbolic at (M, τ ) [3] if σ(M, τ ) ∩ jR = ø. Next, a ray r0 := rτ 0

through τ 0 in the delay-parameter space R
nd+ is the set {δτ 0 ∈ R

nd+ : δ � 0} and the hyperbolic cone at τ := τ 0 [3] is defined

by H(r0) := {M ∈ R
n2(m+1): σ(M, τ ) ∩ jR = ø,∀τ ∈ rτ 0 }, and the hyperbolic cone H by [3] H := ⋂

r0∈R
nd+

H(r0). If the sta-

bility/hyperbolicity in the commensurate delays case has a complete solution by now (delay intervals explicitly computed
by using an eigenvalue-based approach [2,11] or pseudo-delay techniques [14]), however the incommensurate delays case
leads to more complicated problems, see, e.g. [19,2] for some discussions on its NP-hardness character.

In the sequel, we will use a different interpretation of the quasipolynomials in terms of positive polynomials [4,17] and
this interpretation will allow taking advantage of the existing relaxation techniques [8] for deriving tractable solutions to the
stability problem. More precisely, we will focus on the characterization of the hyperbolic cones in terms of sums-of-squares.

2. Main result

We denote by z = (z1, . . . , zd) the complex coordinates in C
d , and write zk = xk + iyk with xk, yk real variables. . .

The unit torus T
d = {z ∈ C

d; |zi | = 1, 1 � i � d} will be the support manifold for our computations. A real polynomial
p(x, y) = R[x1, . . . , xd, y1, . . . , yd] can be written in complex form as p(x, y) = P (z, z), where P ∈ C[z1, . . . , zd, z1, . . . , zd]
and P (z, z) = P (z, z). Moreover, with the same notation, there exists Q ∈ C[z1, . . . , zd], such that

p(x, y)2 = ∣∣P (z, z)
∣∣2 = ∣∣Q (z)

∣∣2
, z ∈ T

d.

Indeed, notice that zk = 1
zk

whenever zk ∈ T, hence a common denominator of the form (z1 · · · zd)
N in P (z, z) is not seen

after passing to the modulus.

Theorem 2.1. Let q ∈ C[z1, . . . , zd]. Then q(z) �= 0 for all z ∈ T
d if and only if there are complex polynomials p1, . . . , pk, r1, . . . , r� ∈

C[z1, . . . , zd] such that

1 + ∣∣p1(z)
∣∣2 + · · · + ∣∣pk(z)

∣∣2 = ∣∣q(z)
∣∣2(∣∣r1(z)

∣∣2 + · · · + ∣∣r�(z)
∣∣2)

, z ∈ T
d.
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Proof. The condition is clearly sufficient. To prove the necessity one invokes Stengle’s Theorem 1.1, applied to the
real polynomial |q(z)|2. Specifically, we seek a certificate for the emptiness of the set of common zeros of the ideal
(1 − |z1|2, . . . ,1 − |zd|2, |q(z)|2), with the trivial conditions 1 �= 0 and 0 � 0. Assume q(z) �= 0 for z ∈ T

d. There are then
real polynomials f i(x, y) and g(x, y), such that

1 + f1(x, y)2 + · · · + fm(x, y)2 = g(x, y)
∣∣q(z)

∣∣2 + h,

where h ∈ (1 − |z1|2, . . . ,1 − |zd|2). Since g(x, y) > 0 for x + iy ∈ T
d , we infer from Theorem 1.2 that there are real polyno-

mials r j(x, y) such that

g = r2
1 + · · · + r2

n + h1,

with h1 ∈ (1 − |z1|2, . . . ,1 − |zd|2). Since we are working on the torus, we can pull out a common factor |z1 · · · zd|2� so that
all real squares are becoming hermitian squares. The proof is complete. �

In practice it is important to have degree bounds in the above decompositions. Partial results in this directions are
contained in [13]. When working with delay systems, a more natural setting is offered by elements of the algebra generated
by the coordinates and a finite number of exponential functions, see [10].

3. Application to time-delay systems

Introduce now the polynomial fa,τ defined by fa,τ (ω) = fτ ( jω; M, τ ) with ω real, allowing thus an evaluation of fτ
on jR. Consider R0 = ∑nd

m=0 ‖Ak‖2 representing a rough upper bound for the real-part of the rightmost characteristic root

of fτ (see, e.g., [11]) and R =
√

R2
0 + nd . Now, the certificate contained in Theorem 2.1 to the above framework leads, thanks

to the following result, to an effective characterization of the hyperbolic cone in terms of sums-of-squares.

Proposition 3.1. Consider a set of matrices M ∈ R
n2(m+1) . Then the following statements are equivalent:

(i) M ∈ H.
(ii) 0 /∈ σ(

∑m
k=0 Ak) and σ(M, z) ∩ jR∗ = ø, for all z ∈ T

m.
(iii) For all τ � 0, the polynomial fa,τ does not vanish on [−R, R].

The equivalence between (i) and (ii) was derived in [3]. An algorithm for checking the property (ii) in the case when
the nd delays are commensurate was reported by [12] (see [11] for further comments). The main feature of (ii) is that the
root at the origin of f z is not necessarily a root of fτ . Finally, (iii) ⇒ (ii) as a consequence of our Positivstellensatz and
(i) ⇒ (iii) from the definition of the hyperbolic cone H .

A variety of positivity certificates for non-polynomial functions, as in the preceding specific framework, as well as an
SDP relaxation algorithm aimed at their validation is contained in [10,9].
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