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We consider a waveguide modeled by the Laplacian in a straight planar strip with
the Dirichlet condition on the upper boundary, while on the lower one we impose
periodically alternating boundary conditions with a small period. We study the case when
the homogenization leads us to the Neumann boundary condition on the lower boundary.
We establish the uniform resolvent convergence and provide the estimates for the rate of
convergence. We construct the two-terms asymptotics for the first band functions of the
perturbed operator and also the complete two-parametric asymptotic expansion for the
bottom of its spectrum.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On considère un guide d’onde modélisé par le Laplacien dans une bande horizontale, avec
des conditions de Dirichlet sur le bord supérieur et des conditions du type Dirichlet et
Neumann qui alternent périodiquement sur le bord inférieur. La période est considérée
petite et on étudie le problème de l’homogénéisation : on démontre la convergence en
norme de la résolvante vers la résolvante du Laplacien avec des conditions de Neumann
sur tout le bord inférieur et on obtient des estimations du taux de convergence. Ensuite
on donne les deux premiers termes du développement asymptotique des valeurs propres
de l’opérateur perturbé, ainsi que le développement asymptotique complet du bas de son
spectre.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the present Note we consider a model of a quantum waveguide with an infinite number of windows. This model
was suggested in [3]. It is the Laplacian in a straight strip subject to the Dirichlet condition except windows. The windows
are located on the lower boundary and modeled by the Neumann condition on an infinite periodic set of small segments
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located closely each to other. In fact, this is the waveguide with a frequent alternation of the boundary conditions, which is
a singular perturbation from the homogenization theory for bounded domains, see, for instance, [1,5,7–9] and the references
therein. The cited papers can be considered as the motivation for the present note. One more motivation comes from the
waveguide theory, where the waveguides with a finite number of windows were studied intensively, see, for instance, [2,4,
6], and the references therein. At the same time, our model differs very much by the occurring phenomena. The main dis-
tinction to the problems in [1,5,7–9] is that we consider an unbounded domain producing a non-trivial essential spectrum.
In contrast to [2,4,6], the essential spectrum is not stable, but sensitive to the alternation of the boundary conditions.

We consider the described model assuming that the homogenized operator has the Neumann condition on the lower
boundary instead of the alternating ones. This is the main distinction to [3], where the homogenized condition was the
Dirichlet one. Our main results are the uniform resolvent convergence and the estimates for the rate of convergence, and
the two-terms asymptotic expansions for the first band functions and the complete two-parametric expansion for the bottom
of the spectrum. We observe that for bounded domains [5,7] the uniform resolvent convergence was not known. Although
our results are similar to that of [3], they are of a different nature due to another homogenized boundary condition.

The first important distinction to [3] is the estimates for the rate of convergence for the perturbed resolvent. In [3] a
good estimate was obtained for the difference of the perturbed and homogenized resolvents considered operators from L2
into W 1

2 . In our case we obtain a similar good estimate only if we employ certain boundary corrector and consider the
difference of the perturbed resolvent and the resolvent of a model operator still depending on a small parameter. Omitting
the corrector or considering the homogenized resolvent, one worsens the rate of convergence. This situation is close to that
in homogenization of the operators with fast oscillating coefficients in unbounded domains, see, for instance, [10,11].

The second important distinction to [3] is the asymptotics for the bottom of the spectrum consisting of the leading term
with an exponentially small (both in ε and μ) error. The leading term is shown to be a holomorphic in ε and μ function.
It means that the power in ε and μ part of the asymptotics for the bottom of the spectrum can be summed. This is a
completely new result for the problems with frequent alternation of boundary condition, since before all the expansions
were just asymptotic, cf. [1,9].

2. Formulation of the problem and the main results

Let x = (x1, x2) be Cartesian coordinates in R
2, Ω := {x: 0 < x2 < π} be a straight strip of width π . By ε we denote

a small positive parameter, and η = η(ε) is a function with values in (0,π/2). We indicate by Γ+ and Γ− the upper and
lower boundary of Ω , and we partition Γ− into two subsets, γε := {x: |x1 − επ j| < εη, x2 = 0, j ∈ Z} and Γε := Γ− \ γε .
By Hε we indicate the Laplacian in L2(Ω) subject to the Dirichlet boundary condition on Γ+ ∪ γε and to the Neumann one
on Γε . This operator is introduced as the self-adjoint one in L2(Ω) associated with the sesquilinear form (∇u,∇v)L2(Ω) on
W̊ 1

2 (Ω,Γ+ ∪ γε), where W̊ 1
2 (Q , S) indicates the subset of the functions in W 1

2 (Q ) having zero trace on the curve S . The
aim is to study the asymptotic behavior of the resolvent and the spectrum of Hε as ε → +0.

Let H(μ) be the self-adjoint operator in L2(Ω) associated with the sesquilinear form (∇u,∇v)L2(Ω) + μ(u, v)L2(∂Ω) on
W̊ 1

2 (Ω,Γ+), where μ � 0 is a constant. The spectrum of H(0) is purely essential and coincides with [ 1
4 ,+∞). By ‖ · ‖X→Y

we denote the norm of an operator acting from X to Y .
Our first theorem establishes the uniform resolvent convergence for Hε .

Theorem 2.1. Suppose

ε lnη(ε) → −∞, μ = μ(ε) := − 1

ε lnη(ε)
→ +0 ε → +0. (1)

Then there exists a boundary corrector W = W (x, ε,μ) which can be defined explicitly such that

∥∥(Hε − i)−1 − (1 + W )
(

H(μ) − i
)−1∥∥

L2(Ω)→W 1
2 (Ω)

� Cεμ| lnεμ|,
∥∥(Hε − i)−1 − (

H(μ) − i
)−1∥∥

L2(Ω)→L2(Ω)
� Cεμ| lnεμ|,

∥∥(Hε − i)−1 − (
H(0) − i

)−1∥∥
L2(Ω)→W 1

2 (Ω)
� Cμ1/2,

∥∥(Hε − i)−1 − (
H(0) − i

)−1∥∥
L2(Ω)→L2(Ω)

� Cμ,

where the constants C are independent of ε and μ. The spectrum of Hε converges to that of H(0) . Namely, if λ /∈ [ 1
4 ,+∞), then

λ /∈ σ(Hε) for ε small enough. If λ ∈ [ 1
4 ,+∞), then there exists λε ∈ σ(Hε) so that λε → λ as ε → +0.

Since the alternation of the boundary conditions for Hε is periodic, this operator is periodic, too. We employ the Floquet–
Bloch decomposition to study its spectrum. Denote Ωε := {x: |x1| < επ/2, 0 < x2 < π}, γ̊ε := ∂Ωε ∩ γε , Γ̊ε := ∂Ωε ∩ Γε ,
Γ̊± := ∂Ωε ∩ Γ± . By H̊ε(τ ) we indicate the self-adjoint operator in L2(Ωε) associated with the sesquilinear form ((i∂x1 −
τε−1)u, (i∂x1 − τε−1)v)L2(Ωε) + (∂x2 u, ∂x2 v)L2(Ωε) on W̊ 1

2,per(Ωε, Γ̊+ ∪ γ̊ε), τ ∈ [−1,1). Here W̊ 1
2,per(Ωε, Γ̊+ ∪ γ̊ε) is the set

of the functions in W̊ 1(Ωε, Γ̊+ ∪ γ̊ε) satisfying periodic boundary conditions on the lateral boundaries of Ωε . The spectrum
2
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of H̊ε(τ ) consists of discrete eigenvalues only. We indicate them by λn(τ , ε), n ∈ N and arrange in the ascending order
counting multiplicity. By [3, Lm. 4.1] we know that the spectrum of Hε contains its essential part only,

σ(Hε) = σe(Hε) =
∞⋃

n=1

{
λn(τ , ε): τ ∈ [−1,1)

}
.

Let Lε be the subspace of L2(Ωε) consisting of the functions independent of x1, and Qμ be the self-adjoint operator
in Lε associated with the sesquilinear form (u′, v ′)L2(0,π) + μu(0)v(0) on W̊ 1

2 ((0,π), {π}). Our next theorem describes the
uniform resolvent convergence for H̊ε(τ ).

Theorem 2.2. Let |τ | < 1 − � , where 0 < � < 1 is a fixed constant and suppose (1). Then for sufficiently small ε the estimate

∥∥(
H̊ε(τ ) − τ 2ε−2)−1 − Q−1

μ ⊕ 0
∥∥

L2(Ωε)→L2(Ωε)
� C�−1/2(ε1/2μ + ε

)
(2)

holds true, where the constant C is independent of ε, μ, and � .

The next result gives the two-terms asymptotics for the first band functions λn(τ , ε).

Theorem 2.3. Let the hypothesis of Theorem 2.2 holds true. Then given any N, for ε < 2�1/2N−1 the eigenvalues λn(τ , ε), n =
1, . . . , N, satisfy the relations

λn(τ , ε) = τ 2ε−2 + Λn(μ) + Rn(τ , ε,μ),
∣∣Rn(τ , ε,μ)

∣∣ � C�−1/2n4ε1/2μ, (3)

where Λn(μ), n = 1, . . . , N, are the first N eigenvalues of Qμ , and the constant C is the same as in (2). The eigenvalues Λn(μ) solve
the equation

√
Λ cos

√
Λπ + μ sin

√
Λπ = 0, are holomorphic w.r.t. μ, and

Λn(μ) =
(

n − 1

2

)2

+ μ

π(n − 1
2 )

+ O
(
μ2), μ → +0. (4)

The asymptotics (3) imply that the length of the first zones of the spectrum of Hε are of order O(ε−2) and they overlap.
It implies that if they exist, all gaps in the spectrum of Hε “run” to infinity as ε → +0 with the speed at least O(ε−2).

Let ζ be the Riemann zeta-function, and θ(β) be a holomorphic function defined by

θ(β) := −
+∞∑
j=1

1

n
√

4 j2 − β(2 j + √
4 j2 − β)

= −
+∞∑
j=1

(2 j − 1)!!ζ(2 j + 1)

8 j j! β j−1. (5)

Our last theorem gives the complete asymptotic expansion for the bottom of the spectrum of Hε .

Theorem 2.4. For ε small enough, the first eigenvalue λ1(τ , ε) attains its minimum at τ = 0, i.e., inf
τ∈[−1,1)

λ1(τ , ε) = λ1(0, ε). The

asymptotics

λ1(0, ε) = Λ(ε,μ) + O
(
με−1/2e−2ε−1 + ε1/2η1/2) (6)

holds true, where Λ(ε,μ) is the real solution to the equation

√
Λ cos

√
Λπ + μ sin

√
Λπ − ε3μΛ3/2θ

(
ε2Λ

)
cos

√
Λπ = 0, Λ(ε,μ) = Λ1(μ) + o(1), ε → 0. (7)

The function Λ(ε,μ) is jointly holomorphic w.r.t. ε and μ. It can be represented as the series

Λ(ε,μ) = Λ1(μ) + μ2
+∞∑
j=1

ε2 j+1 K2 j+1(μ) + μ3
+∞∑
j=3

ε2 j K2 j(μ), (8)

where the functions K j(μ) are holomorphic w.r.t. μ, and, in particular,

K3(μ) = −ζ(3)

4

Λ2
1(μ)

πΛ1(μ) + μ + πμ2
, K5(μ) = −3ζ(5)

64

Λ3
1(μ)

πΛ1(μ) + μ + πμ2
,

K6(μ) = ζ(3)2

64

Λ3
1(μ)(2π2Λ2

1(μ) + 7πμΛ1(μ) + 2π2μ2Λ1(μ) + 7μ2 + 7πμ3)

(πΛ1(μ) + μ + πμ2)3
.
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