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We discuss a finite element time-relaxation method for high Reynolds number flows. The
method uses local projections on polynomials defined on macroelements of each pair
of two elements sharing a face. We prove that this method shares the optimal stability
and convergence properties of the continuous interior penalty (CIP) method. We give the
formulation both for the scalar convection–diffusion equation and the time-dependent
incompressible Euler equations and the associated convergence results. This note finishes
with some numerical illustrations.
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r é s u m é

Nous présentons une méthode d’éléments finis de type relaxation de temps pour les
écoulements de fluides à grand nombre de Reynolds. Cette approche utilise des projections
locales sur un espace de polynômes défini sur des macor-éléments pour chaque paire
d’éléments adjacents à une face intérieure du maillage. Nous démontrons la stabilité et
la convergence. Nous donnons des résultats pour l’équation de convection–diffusion et les
équations instationnaires d’Euler. Cette note se termine par des résultats numériques.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The computation of high Reynolds number flows is one of the most challenging problems in scientific computing. Indeed
the nonlinear coupling of the Navier–Stokes’ equations leads to small scale features in the solution even for problems with
smooth data. The standard Galerkin methods, being energy conservative, will represent all the energy carrying features on
the resolved scales, leading to spurious oscillations. One way to deal with this problem is to apply a filter to the contin-
uous equation and then model the so-called Reynolds stresses, typically by a nonlinear viscosity, such as the Smagorinsky
model [11]. A different more recent approach is the time-relaxation method, where a penalty term is added for the distance
from the filtered to the unfiltered solution [1].

Another advocated approach is the use of stabilized finite element methods to replace the turbulence model. These
methods are designed so as to have optimal convergence for smooth solutions [9,8,2,4], and to contain perturbations in an
O (h) region from layers. This approach is appealing for large eddy simulation since it indicates the possibility of (i) optimal
convergence for smooth solutions [4]; (ii) containment of pollution caused by high frequency content due to the nonlinear
coupling [5]; (iii) optimal dissipation rates in the turbulent zone [3,10]. Similar quasi-optimal convergence proofs were
obtained recently for a finite element realization of the time-relaxation method [7] in the simple case of a linear transport
equation.
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Here we draw upon similarities of the symmetric stabilization and time-relaxation to propose a simplified time-
relaxation method. Instead of using a global H1 projection for the construction of the filtered approximation we use a
local L2-projection, onto a local space of smoother functions. For each face F this local space is defined on the elements
sharing a face.

Let Ω ⊂ Rd be a polygonal domain with boundary ∂Ω and exterior normal n, d = 2,3. Our model problems read

−ε�u + β · ∇u + u = f ∈ L2(Ω) in Ω, u = 0 on ∂Ω, and (1)

∂t u + (u · ∇)u + ∇p = f ∈ [
L2(Ω)

]2
, ∇ · u = 0 in Ω, u · n = 0 on ∂Ω, u(0) = u0. (2)

In problem (1) we take ε ∈ R+ and β ∈ [W 1,∞(Ω)]2 and f ∈ L2(Ω) is the source term.

2. Finite element framework

Let {Th}h , with Th = {K }, be a quasi-uniform family of meshes with h = maxK∈Th diam(K ). We denote the set of interior
faces by Fh . For each face F ∈ Fh we introduce the macro element K̂ F consisting of K and K ′ ∈ Th such that F = K ∩ K ′ . We
introduce the standard finite element space Vh of piecewise isoparametric polynomial functions vh , such that the reference
polynomial space contains the set of polynomials of maximal total degree k, Pk . Moreover we introduce the local polynomial
spaces associated to each face F

Wl(K̂ F ) := {
w ∈ Pl(K̂ F )

}
, l � 0.

We define the scalar products ( f , g)Ω := ∫
Ω

f g dx and 〈 f , g〉∂Ω := ∫
∂Ω

f g ds for L2-functions f , g .

2.1. Time-relaxation and equivalence with interior penalty methods

Consider the abstract problem, find u ∈ V such that a(u, v) = ( f , v) for all v ∈ V with Galerkin approximation find
uh ∈ Vh such that a(uh, vh) = ( f , vh) for all vh ∈ Vh . The idea of the time-relaxation method (see for instance [7] and
references therein) is then to add a term s(u, v) of the form

s(u, v) = (
τ−1(u − Gu), v − G v

)
Ω

,

where G is some filtering operator G : V 
→ W where W is a space with functions of higher regularity. The relaxation
time τ sets the dissipation rate for the scales that are filtered out by G , typically corresponding to the eddy turnover time.
The bilinear form s is symmetric and positive semi-definite.

The spurious oscillations that appears in Galerkin methods are due to energy accumulation on the highest frequencies.
In the case of finite element methods the piecewise polynomial carries the approximation properties of the space, and the
highest frequencies are represented by the singularities over element faces, i.e. jumps in the solution or its derivatives over
element faces. It is this scale separation that naturally occurs in finite element methods that we wish to exploit here. Indeed
for each interior face F we let the projection G F be defined by G F uh ∈ Wl(K̂ F ) such that

(G F uh, vh)K̂ F
= (uh, vh)K̂ F

, ∀vh ∈ Wl(K̂ F ).

Clearly by the orthogonality of the projection this operator is symmetric, i.e.

(uh − G F uh, vh)K̂ F
= (uh − G F uh, vh − G F vh)K̂ F

. (3)

The time-relaxation term that we propose will act on the singular part of the finite element solution only and is defined by

sl(uh, vh) :=
∑

F∈Fh

τ−1
F

(
(uh − G F uh), vh

)
K̂ F

,

where l refers to the polynomial order of the projection space Wl(K̂ F ). Let τF := hF /σF where σF > 0 denotes a charac-
teristic flow velocity, that may be chosen locally provided it remains bounded away from zero. It clearly has the physical
dimension of time and corresponds to the time needed to cross K F . The form (3) acts on the jump of uh and all its
derivatives and is therefore a generalization of the CIP method [6]. We now prove the equivalence with the multipenalty
stabilization operator

j(uh, vh) :=
∑

F∈Fh

k∑
i=1

τ−1
F h2i+1

K

∫
F

[
Diuh

][
Di vh

]
ds,

where [x] denotes the jump of quantity x over the face F . The sign is irrelevant.
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Fig. 1. Convection–diffusion: solution with l = 1 (left) and l = 2 (right) with 4096 elements.

Lemma 2.1. Let uh ∈ Wh and l � k. Then there exists c1, c2 > 0 independent of the local mesh size, but not the local mesh geometry
such that c1 j(uh, uh) � sl(uh, uh) � c2 j(uh, uh).

Proof. Consider an arbitrary face F with macro K̂ F . Map them to the reference elements F and K̂ F and denote the mapped
functions G̃ F uh and ũh . By norm equivalence there exists c̃1, c̃2 > 0 such that

c̃1

k∑
i=1

∫
F

[
Diũh

]2
ds �

∫

K̂ F

(ũh − G̃ F uh)
2 dx � c̃2

k∑
i=1

∫
F

[
Diũh

]2
ds.

The first inequality follows from [Di G̃ F uh] = 0 on F and an inverse inequalities. For the second notice that both the time
relaxation and the multipenalty induce seminorms with the same kernel consisting of the space Wl(K̂ F ). We conclude by
scaling back to the physical element and summing over F ∈ Fh . �
Remark 1. Slight variations of the time-relaxation term are possible. For instance the following streamline diffusion
form minimizes crosswind diffusion: sl(uh, vh) := ∑

F∈Fh
(τβ · ∇(uh − G F uh), β · ∇(vh − G F vh))K̂ F

. Alternatively the H1-

projection may be used so that (∇G F uh,∇vh)K̂ F
= (∇uh,∇vh)K̂ F

for all vh ∈ Wl(K̂ F ). Then a variant is sl(uh, vh) :=∑
F∈Fh

(τ‖β‖K̂ F
∇(uh − α(uh)G F uh),∇vh)K̂ F

, where 0 � α(uh) � 1 is a function allowing the method to degenerate to first
order viscosity close to shocks.

3. Numerical examples

3.1. The convection–diffusion equation

Let the bilinear form a(·, ·) be defined by a(u, v) := (β ·∇u +u, v)Ω + (ε∇u,∇v)Ω and the corresponding time-relaxation
finite element method reads, find uh ∈ V 0

h := Vh ∩ H1
0(Ω) such that

a(uh, vh) + sl(uh, vh) = ( f , vh)Ω, ∀vh ∈ V 0
h . (4)

Consider the triple norm |||uh|||2 := ‖h
1
2 |β|−1/2β · ∇uh‖2

L2(Ω)
+ ‖uh‖2

L2(Ω)
+ ‖ε 1

2 ∇uh‖2
L2(Ω)

. The following stability and con-

vergence estimates can be proven thanks to Lemma 2.1 and the CIP-analysis [6].

Proposition 3.1. Let uh be the solution of (4). Then there holds |||uh||| � C‖ f ‖2
L2(Ω)

. Let u be a sufficiently smooth solution of (1) and

uh ∈ V 0
h the solution of (4), with l � k. Then

|||u − uh||| � C
(
h + |β| 1

2 h
1
2 + ε

1
2
)
hk|u|Hk+1(Ω).

As a numerical example, we use Ω = ]−1,1[2, β = (1+ y,−(1+ x)), ε = 10−6 and a characteristic function on the inflow
{−1} × ]−1,1[. All computations are done with continuous bilinear finite elements on quadrilateral meshes. The results for
l = 1 and l = 2 are shown in Fig. 1.

3.2. The incompressible Euler’s equation

We introduce an additional time-relaxation term to stabilize the pressure velocity coupling letting sl(ph,qh) =∑
F∈Fh

h−1
F σ−1

F ((ph − G F ph),qh − G F qh)K̂ F
. This is leads to a pressure stabilization that may be analyzed using the methods

presented in [3]. The space semi-discretized time-relaxation finite element method then reads find (uh(t), ph(t)) ∈ Xh :=
[Vh]2 × Vh such that

(∂t uh, vh)Ω + c(uh; uh, vh) + b(ph, vh) − b(qh, uh) + sl(uh, vh) + sl(ph,qh) = ( f , vh)Ω ∀vh ∈ Xh, (5)
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N ‖u − uh‖L1 ‖u − uh‖W 1
1

64 5.132 × 10−2 1.129 × 100

256 1.304 × 10−2 6.073 × 10−1

1024 3.434 × 10−3 3.281 × 10−1

4096 9.255 × 10−4 1.762 × 10−1

16 384 2.308 × 10−4 8.851 × 10−2

Fig. 2. Errors for the standing vortex problem at t = 3 and plot of the point-wise error for the standing vortex problem.

where, with u−
h,n := 1

2 (uh · n − |uh · n|),

c(uh; uh, vh) :=
(

(uh · ∇)uh + 1

2
(∇ · uh)uh, vh

)
Ω

− 〈
u−

h,nuh, vh
〉
∂Ω

, b(ph, vh) := (ph,∇ · vh) − 〈ph, vh · n〉∂Ω .

Let ‖(uh, ph)‖|h := (‖√|uh · n|uh‖2
L2(∂Ω)

+ s(uh, uh) + sp(ph, ph))1/2. For smooth solutions to (2) the time-relaxation finite

element discretization satisfies the following quasi-optimal convergence results.

Proposition 3.2. Let (u, p) be a sufficiently smooth solution of (2) and (uh, ph) the solution of (5), with l � k. Then, with C(u, T ) ∼
exp(‖∇u‖L∞(Ω)T ),

∥∥(u − uh)(T )
∥∥2

L2(Ω)
+

T∫
0

∣∣∣∣∣∣(uh, ph)
∣∣∣∣∣∣2

h dt � C(u, T )h2k+1(|u|2
Hk+1(Ω)

+ |p|2
Hk+1(Ω)

)
.

The proof of this result follows from the norm equivalence Lemma 2.1 and the analysis of [4].
As a numerical example, we consider the standing (stationary) vortex problem in the domain Ω = ]−1,1[2. The solution

is given in cylindrical coordinates by uθ = 0 and ur = 0 for r � 0.4 and r � 0.8, uθ = 2.5r for 0.4 � r � 0.8, and uθ = 2−2.5r
for r � 0.8. We solve the discrete equations up to t = 3 and then compute the errors in the L1 and W 1

1 norms (the solution
regularity does not allow for optimal convergence in L2). The computed errors as well as a typical plot of it are shown in
Fig. 2.

References

[1] N.A. Adams, S. Stolz, A subgrid-scale deconvolution approach for shock capturing, J. Comput. Phys. 178 (2002) 391–426.
[2] R. Becker, M. Braack, A two-level stabilization scheme for the Navier–Stokes equations, in: Numerical Mathematics and Advanced Applications, Springer,

Berlin, 2004, pp. 123–130.
[3] E. Burman, Interior penalty variational multiscale method for the incompressible Navier–Stokes equation: Monitoring artificial dissipation, Comput.

Methods Appl. Mech. Engrg. 196 (2007) 4045–4058.
[4] E. Burman, M.A. Fernández, Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: Space discretization

and convergence, Numer. Math. 107 (2007) 39–77.
[5] E. Burman, J. Guzmàn, D. Leykekhman, Weighted error estimates of the continuous interior penalty method for singularly perturbed problems, IMA J.

Numer. Anal. 29 (2009) 284–314.
[6] E. Burman, P. Hansbo, Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems, Comput. Methods Appl. Mech.

Engrg. 193 (2004) 1437–1453.
[7] J. Connors, W. Layton, On the accuracy of the finite element method plus time relaxation, Math. Comp. 79 (2010) 619–648.
[8] J.-L. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling, Modél. Math. Anal. Numér. 33 (1999) 1293–1316.
[9] P. Hansbo, A. Szepessy, A velocity–pressure streamline diffusion finite element method for the incompressible Navier–Stokes equations, Comput. Meth-

ods Appl. Mech. Engrg. 84 (1990) 175–192.
[10] J. Principe, R. Codina, F. Henke, The dissipative structure of variational multiscale methods for incompressible flows, Comput. Methods Appl. Mech.

Engrg. 199 (2010) 791–801.
[11] J. Smagorinsky, Some historical remarks on the use of nonlinear viscosities, in: Large Eddy Simulation of Complex Engineering and Geophysical Flows,

Cambridge Univ. Press, New York, 1993, pp. 3–36.


	A ﬁnite element time relaxation method
	Introduction
	Finite element framework
	Time-relaxation and equivalence with interior penalty methods

	Numerical examples
	The convection-diffusion equation
	The incompressible Euler's equation

	References


