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We establish a nonlinear Korn inequality with boundary conditions showing that the H1-
distance between two mappings from Ω ⊂ R

n into R
n preserving orientation is bounded,

up to a multiplicative constant, by the L2-distance between their metrics. This inequality is
then used to show the existence of a unique minimizer to the total energy of a hyperelastic
body, under the assumptions that the Lp-norm of the density of the applied forces is
small enough and the stored energy function is bounded from below by a positive definite
quadratic function of the Green–Saint Venant strain tensor.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous établissons une inégalité de Korn non linéaire avec conditions au bord montrant que
la distance dans H1 entre deux applications de Ω ⊂ R

n à R
n préservant l’orientation est

majorée, à une constante multiplicative près, par la distance dans L2 entre leurs métriques.
Cette inégalité est ensuite utilisée pour montrer l’existence d’un minimiseur unique de
l’énergie totale d’un corps hyperélastique, sous les hypothèses que la norme de la densité
des forces appliquées est suffisamment petite en norme Lp , et la densité d’énergie de
déformation est minorée par une fonction quadratique du tenseur de Green–Saint Venant.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

We use the following notation. M
n , S

n , M
n+ , and O

n+ denote respectively the space of square matrices of order n,
the space of all symmetric matrices of order n, the set of all matrices A ∈ M

n such that det A > 0, and the set of all
matrices A ∈ M

n+ such that AT A = I . AT and I denote respectively the transpose of the matrix A and the identity matrix
in M

n . The inner products in R
n and M

n are respectively denoted · and : . The Euclidean norm in R
n and the Frobenius

norm in M
n are both denoted by | · |. Vector and matrix fields are denoted by boldface letters. The gradient of a vector field

u is the matrix field ∇u, whose columns are the partial derivatives of u. The divergence of a matrix field A is the vector
field div A, whose components are the divergences of the row vectors of A. The matrix field I is defined by I(x) = I for all
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x ∈ R
n . L p(Ω), W k,p(Ω) or Hk(Ω) if p = 2, and Ck(Ω) denote respectively Lebesgue spaces, Sobolev spaces, and k times

continuously differentiable functions.
The first result of this Note is the following nonlinear Korn inequality with boundary conditions:

Theorem 1. Let Ω be a bounded connected open subset of R
n with a Lipschitz-continuous boundary ∂Ω and let λ < 1. Then there

exists a constant C such that

‖∇u − ∇v‖L2(Ω) � C

(1 − λ)2+n/2

∥∥∇uT ∇u − ∇vT ∇v
∥∥

L2(Ω)

for all pairs (u,v) ∈ W 1,4(Ω;R
n) × C 1(Ω;R

n) that satisfy u(x) = v(x) for almost all x ∈ ∂Ω , det(∇u(x)) > 0 for almost all x ∈ Ω ,
v is injective, and ‖∇v − I‖L∞(Ω) � λ.

Note that the above inequality remains valid for deformation fields that are possibly non-injective and satisfy more
general boundary conditions, as will be shown elsewhere.

The inequality of Theorem 1 is reminiscent of another inequality, established earlier by Ciarlet and Mardare [4], showing
that, given any vector field v ∈ C 1(Ω;R

n) satisfying det∇v > 0 in Ω , there exists a constant C(v) such that

inf
R∈O

n+
‖∇u − R∇v‖L2(Ω) � C(v)

∥∥∇uT ∇u − ∇vT ∇v
∥∥1/2

L1(Ω)

for all u ∈ H1(Ω;R
n) satisfying det ∇u > 0 a.e. in Ω . The idea that the exponent 1/2 can be dropped at the expense of a

stronger norm in the right-hand side of the last inequality is due to Blanchard [2].
Theorem 1 has applications in nonlinear elasticity. Consider a body with reference configuration Ω ⊂ R

3, made of a
hyperelastic material characterized by a stored energy function Ŵ : Ω × M

3+ → R, and subjected to dead body forces of
density f : Ω → R

3. Then the total energy corresponding to a deformation u : Ω → R
3 of the body is given by

J (u) =
∫
Ω

Ŵ
(
x,∇u(x)

)
dx −

∫
Ω

f(x) · u(x)dx. (1)

If Ŵ is polyconvex and satisfies suitably growth conditions, then J possesses a minimizer over a suitable set of admissi-
ble deformations u; cf. Ball [1]. If in addition the Euler–Lagrange equation corresponding to this minimization problem has
a solution by the implicit function theorem, then this solution coincides with the minimizer above; cf. Zhang [8].

The second result of this Note is that the total energy J possesses a minimizer over a suitable set of admissible
deformations u for some hyperelastic materials that does not necessarily meet the assumptions of Ball and Zhang. We
assume that the stored energy function Ŵ satisfies the axiom of material frame-indifference, so that there exists a function
W : Ω × S

3 → R such that

Ŵ (x, F ) = W (x, E), E = 1

2

(
F T F − I

)
for almost all x ∈ Ω and for all F ∈ M

3+. (2)

We recall that Ω is a natural configuration of the body if ∂W
∂ E (x,0) = 0 for all x ∈ Ω .

Theorem 2. Let Ω be a bounded connected open subset of R
3 with a boundary of class C 2 and let f ∈ L p(Ω;R

3), p > 3. Assume that
W ∈ C 3(Ω × S

3), that ∂W
∂ E (x,0) = 0 for all x ∈ Ω , and that there exist constants α > 0 and ε > 0 such that

W (x, E + H) � W (x, E) + ∂W

∂ E
(x, E) : H + α|H|2 for all x ∈ Ω, H ∈ S

3, E ∈ S
3, |E| < ε.

Then there exists a constant δ > 0 with the following property: If ‖f‖Lp(Ω) < δ, then the functional J defined by Eqs. (1)–(2) has a
unique minimizer over the set of admissible deformations defined by

M = {
u ∈ W 1,4(Ω;R

3); det(∇u) > 0 a.e. in Ω, u(x) = x for all x ∈ ∂Ω
}
.

Moreover, the minimizer v belongs to the space C 1(Ω;R
3), is injective from Ω into R

3 , and satisfies det ∇v(x) > 0 for all x ∈ Ω .

Theorem 2 applies in particular to the stored energy function of Saint Venant–Kirchhoff materials, given in terms of its
Lamé constants λ > 0 and μ > 0 by the expression

Ŵ (x, F ) = W (x, E) = λ

2
(tr E)2 + μ|E|2, E = 1

2

(
F T F − I

)
, for all (x, F ) ∈ Ω × M

3+.

Note that the previous existence theorems of Ball [1], Zhang [8], and Ciarlet and Mardare [5] do not apply in that
case.
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Theorem 2 still holds if W is of class C 3 only over the set Ω × {E ∈ S
3; |E| < ε} for some ε > 0. Note also that the

assumptions of Theorem 2 imply that the mapping E �→ W (x, E) is convex in a neighborhood of the zero matrix. But this
does not imply that the mapping F �→ Ŵ (x, F ) is convex in a neighborhood of the identity matrix (Ŵ and W are related
by (2)), so the direct methods in the calculus of variations cannot be used to prove Theorem 2.

2. Proof of Theorem 1

Extend the mapping v to an open ball B ⊂ R
n containing Ω and let u(x) = v(x) for all x ∈ B \ Ω . Define the composite

mapping ϕ := u ◦ v−1 and note that ϕ ∈ W 1,4(B;R
n) and det(∇ϕ(x)) > 0 for almost all x ∈ B; cf. Ciarlet [3, Theorems 5.5.1

and 5.5-2].
The geometric rigidity lemma of Friesecke, James and Müller [6, Theorem 3.1] implies that there exists a constant K

independent of u and v such that

inf
R∈O

n+

∫
B

∣∣∇ϕ(x) − R
∣∣2

dx � K

∫
B

inf
Q ∈O

n+

∣∣∇ϕ(x) − Q
∣∣2

dx.

The identity I = 1
|B\Ω|

∫
B\Ω ∇ϕ(x)dx, where |B \ Ω| denotes the Lebesque measure of the set B \ Ω , implies that

‖∇ϕ − I‖L2(B) �
( ∫

B

∣∣∇ϕ(x) − R
∣∣2

dx

)1/2

+ |B|1/2

|B \ Ω|
∫

B\Ω

∣∣R − ∇ϕ(x)
∣∣ dx for all R ∈ O

n+.

Combining these inequalities gives

‖∇ϕ − I‖L2(B) � C0

( ∫
B

inf
Q ∈O

n+

∣∣∇ϕ(x) − Q
∣∣2

dx

)1/2

, where C0 = K 1/2
(

1 + |B|1/2

|B \ Ω|1/2

)
,

which next implies, by using that infQ ∈O
n+ |F − Q |2 � |F T F − I|2 for all F ∈ M

n+ , that

‖∇ϕ − I‖L2(Ω) = ‖∇ϕ − I‖L2(B) � C0
∥∥∇ϕT ∇ϕ − I

∥∥
L2(B)

= C0
∥∥∇ϕT ∇ϕ − I

∥∥
L2(Ω)

.

Now, by changing variables in the integrals defining the L2(Ω)-norms above, we obtain that∫
Ω

|∇u − ∇v|2 det(∇v)

|∇v|2 dy � C2
0

∫
Ω

∣∣∇uT ∇u − ∇vT ∇v
∣∣2∣∣(∇v)−1

∣∣4
det(∇v)dy.

Since |∇v(y) − I| � λ < 1 and |∇v−1(y) − I| � λ
1−λ

for all y ∈ Ω , we deduce that the singular values of the matrix ∇v(y)

are contained in the interval [ 1−λ
λ+(1−λ)|I| , |I| + λ]. Therefore there exist constants C1 > 0 and C2 < ∞ such that det(∇v)

|∇v|2 �
C1(1 − λ)n and |(∇v)−1|4 det(∇v) � C2

(1−λ)4 . Combined with the previous inequality, this implies that

‖∇u − ∇v‖L2(Ω) � C0(C2/C1)
1/2

(1 − λ)2+n/2

∥∥∇uT ∇u − ∇vT ∇v
∥∥

L2(Ω)
.

3. Proof of Theorem 2

The assumptions on the function W imply that J (u) ∈ R∪{+∞} is well defined. They also imply that the Euler–Lagrange
equation formally derived from the total energy J : M → R ∪ {+∞}, that is

−div
(

∇v
∂W

∂ E

(·,E(v)
)) = f in Ω and v(x) = x for all x ∈ Γ,

has a solution v = v(f) ∈ W 2,p(Ω;R
3) given by the implicit function theorem for any f ∈ L p(Ω;R

3) such that ‖f‖Lp(Ω) < δ;
cf., e.g., Quintela-Estevez [7, Theorem 4.5]. Moreover, v is of class C 1 and injective from Ω into R

3 (cf. Ciarlet [3, Theo-
rems 5.5.1 and 5.5-2]) and

λ(δ) := sup
{∥∥∇v(f) − I

∥∥
L∞(Ω)

; f ∈ Lp(
Ω;R

3), ‖f‖L p(Ω) < δ
} → 0 as δ → 0.

Choosing δ sufficiently small, we have ‖E(v)‖L∞(Ω) � 3‖∇v − I‖L∞(Ω) < 3λ(δ) < ε. Then

J (u) − J (v) �
∫ (

∂W

∂ E

(·,E(v)
) : (E(u) − E(v)

) + α
∣∣E(u) − E(v)

∣∣2
)

dx −
∫

f · (u − v)dx.
Ω Ω
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But

∂W

∂ E

(·,E(v)
) : (E(u) − E(v)

) = ∂W

∂ E

(·,E(v)
) : ∇vT ∇(u − v) + ∂W

∂ E

(·,E(v)
) : ∇(u − v)T ∇(u − v)

2

(since ∂W
∂ E (x,E(v)(x)) ∈ S

3 for all x ∈ Ω) and∫
Ω

∂W

∂ E

(·,E(v)
) : ∇vT ∇(u − v)dx = −

∫
Ω

div
(

∇v
∂W

∂ E

(·,E(v)
)) · (u − v)dx.

Hence

J (u) − J (v) �
∫
Ω

∂W

∂ E

(·,E(v)
) : (∇u − ∇v)T (∇u − ∇v)

2
dx + α

∫
Ω

∣∣E(u) − E(v)
∣∣2

dx

� α

4

∥∥∇uT ∇u − ∇vT ∇v
∥∥2

L2(Ω)
− 1

2

∥∥∥∥∂W

∂ E

(·,E(v)
)∥∥∥∥

L∞(Ω)

‖∇u − ∇v‖2
L2(Ω)

.

Then the nonlinear Korn inequality of Theorem 1 shows that, for some constant C ,

J (u) − J (v) �
(

α(1 − λ(δ))7

4C2
− 1

2

∥∥∥∥∂W

∂ E

(·,E(v)
)∥∥∥∥

L∞(Ω)

)
‖∇u − ∇v‖2

L2(Ω)
.

But limδ→0(
α(1−λ(δ))7

4C2 − 1
2 ‖ ∂W

∂ E (·,E(v))‖L∞(Ω)) = α
4C2 . Hence J (u) − J (v) > 0 for all u ∈ M, u �= v, if δ is chosen small

enough.
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