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In this Note, we generalize to the almost complex setting, a theorem of Zaidenberg
(1983) [13] and Thai (1991) [12] by giving a characterization on hyperbolic embeddability
of a locally complete and relatively compact almost complex submanifold in terms of
extension of pseudo-holomorphic disks from the punctured unit disk and of limit J -
complex lines.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note, on généralise dans le cas presque complexe un théorème de Zaidenberg
(1983) [13] et Thai (1991) [12] en donnant une caractérisation des variétés presque
complexe relativement compacte, hyperboliquement plongés et localement complètes en
terme d’extension des courbes pseudo-holomorphes et des limites de droites J -complexes.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Une variété presque complexe (N, J ) est une variété lisse réelle équipée d’une structure presque complexe J . En utilisant
les courbes pseudo-holomorphes, on peut définir la pseudo-distance de Kobayashi d J

N et la pseudo-métrique de Kobayashi–

Royden K J
N .

On dit que (N, J ) est hyperbolique si d J
N est une distance. Une variété presque complexe hyperbolique (N, J ) est dite

hyperbolique complète si (N,d J
N ) est un espace complet.

Soit (M, J ) une sous-variété presque complexe d’une variété presque complexe (N, J ). On dit que (M, J ) est localement
hyperbolique complète si tout point p dans M admet un voisinage V dans N tel que (M ∩ V , J ) est hyperbolique complet.

Rappelons que (M, J ) est dite hyperboliquement plongée dans (N, J ) si pour tous x, y ∈ M , x �= y, il existe des voisinages
ouverts U de x et V de y telles que d J

M(M ∩ U , M ∩ V ) > 0.
On dit que (M, J ) possède la propriété de �∗-prolongement pour (N, J ) si toute courbe pseudo-holomorphe de �∗ dans

(M, J ) se prolonge en une courbe pseudo-holomorphe de � dans (N, J ), où � désigne le disque unité et �∗ = � \ {0}.
Joo [5] a prouvé, en utilisant le lemme de monotonie de Gromov [9], que (M, J ) possède la propriété de �∗-

prolongement pour (N, J ) si (M, J ) est relativement compact et hyperboliquement plongée dans (N, J ). Dans [4], on a
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donné une preuve élémentaire de ce résultat en montrant que la courbe pseudo-holomorphe considérée définie sur le
disque épointé a une énergie finie, donc se prolonge.

D’abord on donne une autre preuve du théorème de prolongement en utilisant les fonctions de Chirka, ensuite on
démontre le résultat principal suivant de cette Note :

Théoremè 1. Soit (M, J ) une sous variété localement hyperbolique complète et relativement compacte d’une variété presque complexe
(N, J ). Alors les propositions suivantes sont équivalentes :

(i) (M, J ) est hyperboliquement plongé dans (N, J ).
(ii) (M, J ) possède la propriété de �∗-prolongement pour (N, J ) et ∂M ne contient aucune limite de droites J -complexes.

(iii) M ne contient aucune droite J -complexe et ∂M ne contient aucune limite de droites J -complexes.

De plus, si l’une des ces conditions est satisfaite, alors (M, J ) est hyperbolique complète.

1. Introduction and definitions

For every r > 0, we set �r = {z ∈ C, |z| < r}, � = �1 is the unit disk and �∗ = � \ {0}.
An almost complex manifold (N, J ) is a smooth real manifold equipped with an almost complex structure J , that is

a C∞-field of complex linear structures on the tangent bundle T N . Using pseudo-holomorphic curves, we can define the
Kobayashi pseudo-distance d J

N on (N, J ) and the Kobayashi–Royden infinitesimal pseudo-metric K J
N on T N .

We say that (N, J ) is hyperbolic if d J
N is a distance. A hyperbolic almost complex manifold (N, J ) is complete hyperbolic if

it is Cauchy complete with respect to d J
N .

Let (M, J ) be an almost complex submanifold of an almost complex manifold (N, J ).
We say that (M, J ) is locally complete hyperbolic if every p ∈ M has a neighborhood V in N such that (M ∩ V , J ) is

complete hyperbolic. For instance, it is known that given (M, J ) an almost complex manifold of real dimension 4 and D an
immersed pseudo-holomorphic curve in M , then (M \ D, J ) is locally complete hyperbolic, see [1].

Recall that (M, J ) is hyperbolically embedded in (N, J ) if for x, y ∈ M , x �= y, there exist open neighborhoods U of x and
V of y such that d J

M(M ∩ U , M ∩ V ) > 0. Some criteria for hyperbolic embedding are proved in [4]. Namely, we prove that
if M is relatively compact in N , then (M, J ) is hyperbolically embedded in (N, J ), if and only if for every length function G
on N , there exists a positive constant c such that K J

M � c.G .
We say that (M, J ) has the �∗-extension property for (N, J ) if every pseudo-holomorphic curve from �∗ into (M, J ) can

be extended to a pseudo-holomorphic curve from � into (N, J ).
Joo [5] proved that (M, J ) has the �∗-extension property for (N, J ) if (M, J ) is relatively compact and hyperbolically

embedded in (N, J ). His proof is based on the so-called Gromov’s monotonicity lemma [9]. In [4], the authors gave an
elementary proof of that result by showing that the considered pseudo-holomorphic curve defined on the punctured disk
has a finite energy and then extends. We provide here another proof based on “Chirka’s functions” with prescribed poles.
We should mention that this gives an alternative approach to the standard case.

Let f :�∗ → (M, J ) be a pseudo-holomorphic curve. We are interested when this map extends to a pseudo-holomorphic
curve on all of �. In other words, we seek conditions when f has removable singularity at 0.

Following Lang (see [8], p. 40), we consider the following conditions:
J-KW 1. (M, J ) is hyperbolically embedded in (N, J ), and there exists a sequence {zn} in �∗ such that zn → 0 and { f (zn)}

converges to a point p ∈ M .
We note that the condition about the existence of the sequence {zn} is automatically satisfied if M is relatively compact

in N .
J-KW 2. The map f has a removable singularity at 0, that is, f extends to a pseudo-holomorphic curve in a neighborhood

of 0.

Theorem 1. We have the implication

J-KW 1 �⇒ J-KW 2.

In particular, if (M, J ) is a relatively compact almost complex submanifold hyperbolically embedded in an almost complex manifold
(N, J ), then every pseudo-holomorphic curve f :�∗ → M extends to a pseudo-holomorphic curve f̃ :� → N, i.e., (M, J ) has the �∗-
extension property for (N, J ).

We mention that such a theorem, in the complex case, is first proved by Kwack [7]. Her proof is based on winding
numbers arguments due to Grauert–Reckzigel. Later Noguchi [10] proved this theorem, his arguments exploited the lower
bound formula for the area of analytic varieties in terms of the Lelong numbers.
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2. Proofs required, and main result

Our proof is based on two ingredients. The first is due to Chirka, see [2].

Lemma 2. Given (M, J ) an almost complex manifold, then for every p ∈ M there exist relatively compact local coordinate neigh-
borhoods U , W of p such that W � U and positive constants A and B such that for every q ∈ W , the mapping z 
→ log |z − q|
+ A|z − q| + B|z|2 is J -plurisubharmonic on U .

Consequently, by adding such functions, we can construct a J -plurisubharmonic function on U with finitely many poles
in W .

The second is the following well-known lemma in the complex case and still valid in the almost complex case.

Lemma 3. Let (M, J ) be an almost complex submanifold hyperbolically embedded in an almost complex manifold (N, J ), f :�∗ →
(M, J ) be a pseudo-holomorphic curve and let p ∈ M. If (zn) is a sequence in �∗ such that f (zn) → p, then f (σn) → p, where
σn = {z ∈ �: |z| = |zn|}.

Proof of Theorem 1. Assume J-KW 1. Let U and W be relatively compact local coordinate neighborhoods of p such that
W ⊂ U , as is Lemma 2.

It will suffice to prove that there exists r > 0 such that f (�∗
r ) ⊂ W , thus showing that f extends to a continuous map

from � to N and by a result of Sikorav ([11], p. 169) it is known that if f is continuous everywhere, differentiable and
pseudo-holomorphic except on a discrete subset, then it is differentiable and thus pseudo-holomorphic.

Assume there is no such r. Using Lemma 3, we have f (σn) → p, where σn = {z ∈ �: |z| = |zn|}. This implies that
f (σn) ⊂ W , for sufficiently large n. Let an,bn be positive numbers with an < |zn| < bn such that the annulus defined by
an < |z| < bn is the largest whose image under f is contained in W . We let

αn(t) = an exp 2iπt and βn(t) = bn exp 2iπt, 0 � t � 1

be the two circles bounding the open annulus. Then

f (αn) and f (βn) ⊂ W ,

but these images of the two circles αn and βn are not contained in W . Since W is compact, using Lemma 3, we may assume
after sub-sequencing that f (αn) converges to q ∈ ∂W and we have q �= p.

Let An = {z ∈ C: an � |z| � |zn|} and ϕ be a J -plurisubharmonic on U satisfying ϕ−1(−∞) = {p,q}. Such function exits
by Lemma 2. Hence, for K > 0 and for n sufficiently large, we have

f (∂An) ⊂ {
z ∈ U : ϕ(z) � −K

}
.

Applying the standard maximum principle, we deduce that f (An) ⊂ {z ∈ U : ϕ(z) � −K }. Finally, we get a contradiction.
Since p and q are not in the same connected component for K sufficiently large. �
Remark 1. We can also consider the annulus Bn = {z ∈ C: |zn| � |z| � bn} and we remark, after sub-sequencing, that the
sequence f (βn) converges to q′ ∈ ∂W and we have q′ �= p.

Next, we generalize a theorem of Zaidenberg (see [13], Theorem 2.1) to the almost complex case.

Theorem 4. Let (M, J ) be a locally complete hyperbolic and relatively compact submanifold of an almost complex manifold (N, J ). If
M contains no J -complex lines and ∂M contains no limit J -complex lines, then (M, J ) is hyperbolically embedded in (N, J ).

Here by a limit J -complex line of ∂M we mean a non-constant entire J -holomorphic curve with values in ∂M which can
be approximated on each �R by J -holomorphic curves from �R into M .

The proof of Theorem 4 is an easy adaptation of the ideas of Green [3] and Zaidenberg [13] and contains a number of
intermediate steps, which we sketch. Using a special covering, we introduce a differential metric on M called the Kobayashi–
Royden–Green (KRG) metric. We should mention, that using the KRG-metric, the author and Haggui proved the stability of
hyperbolic embeddedness under small perturbation of the almost complex structure, see Theorem 3.3 in [4].

Proof. Let G be a fixed length function on N . Cover M by open subsets U1, . . . , U	 , such that for each ν = 1, . . . 	, we have
(Uν, J ) and (Uν ∩ M, J ) are complete hyperbolic. For ξx ∈ T Mx , we put G0(ξx) = min{KUν∩M(ξx)} where the minimum is
taken over those ν so that x ∈ Uν . One can easily prove that G0 is continuous and complete. Now, choose ε > 0 such that for
each x ∈ N , BG(x, ε) the G-ball of radius ε in N lies inside one of (Uν). Define Gε = max(G, ε

3 G0). Clearly, Gε is a complete

metric on M . Now, we prove the following assertion: there exists a positive constant c such that K J � cGε . Otherwise, there
M
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is a monotone increasing sequence (rn) of positive numbers tending to +∞ and a sequence of pseudo-holomorphic curves
fn :�rn → (M, J ) such that f ′

n(0) = ξn and |ξn|Gε = 1. Applying Brody’s reparametrization theorem, we obtain a sequence

of pseudo-holomorphic curves gn :�rn → (M, J ) such that |g′
n(z)|Gε � r2

n

r2
n−|z|2 on �rn and |g′

n(0)|Gε = 1. Hence, we can

extract a subsequence, denoted also by (gn) which converges uniformly with all derivatives on compact sets to a pseudo-
holomorphic curve g : C → (N, J ). As in the complex case (see [13], Lemma 2.7), we prove that |g′(0)|G = 1 and |g′(z)|G �
4/3. Consequently, g is a J -complex line. Now, we prove that either g(C) ⊂ ∂M or g(C) ⊂ M which contradicts the fact that
M does not contain J -complex lines and ∂M does not contain limit J -complex lines. Suppose that there exists z0 ∈ C such
that g(z0) ∈ M . Let z1 be an arbitrary point of C \ {z0}. Since |g′

n(z)|Gε � 4/3 for z ∈ �rn/2, we have: dGε (gn(z1), g(zo)) �
dGε (gn(z1), gn(zo))+ dGε (gn(z0), g(zo)) � 4/3|z1 − z0| + 2/3|z1 − z0|. Hence, gn(z1) ∈ BGε (g(z0),2|z1 − z0|). Since the metric
Gε is complete, so BGε (g(z0),2|z1 − z0|) � M . Consequently, g(z1) = lim gn(z1) ∈ M and finally g(C) ⊂ M . �

We now prove the main result of this Note.

Theorem 5. Let (M, J ) be a locally complete hyperbolic and relatively compact submanifold of an almost complex manifold (N, J ).
Then the following are equivalent:

(i) (M, J ) is hyperbolically embedded in (N, J ).
(ii) (M, J ) has the �∗-extension property for (N, J ) and ∂M contains no limit J -complex lines.

(iii) M contains no J -complex lines and ∂M contains no limit J -complex lines.

Moreover, if one of the above conditions holds, then (M, J ) is complete hyperbolic.

Proof. (i) ⇒ (ii). By Theorem 1, (M, J ) has the �∗-extension property for (N, J ). Thus it remains to show that ∂M con-
tains no limit J -complex lines. We assume that there exists h a limiting J -complex line of ∂M . Let p, q be any pair of
points in h(C), then p = h(a1) and q = h(a2) where a1,a2 ∈ �R for some positive radius R and there exists a sequence
of J -holomorphic curves fn :�R → M which converges uniformly to h|�R . By [4] (see Theorem 2.2), there exists a length
function G on N such that K J

M � G . Consequently, we have dG( fn(a1), fn(a2)) � d J
M( fn(a1), fn(a2)) � d�R (a1,a2). Let n tend

to ∞, we get dG(p,q) � d�R (a1,a2), let R tend to ∞, it follows that p = q and h is a constant.
(ii) ⇒ (iii). Assume that there exists a non-constant J -holomorphic curve f : C → (M, J ), say f (1) �= f (−1). Consider a

holomorphic map g from �∗ into C such that g(1/n) = (−1)n . Clearly, the pseudo-holomorphic curve f ◦ g does not extend.
(iii) ⇒ (i). Follows from Theorem 4.
Finally, we see that (M, J ) is complete hyperbolic since it is locally complete hyperbolic and hyperbolically embedded in

(N, J ), see Kobayashi [6], Theorem 3.3.4, p. 72, which is still valid for almost complex manifolds. �
As an immediate consequence, we obtain the following characterization of the hyperbolicity of an almost complex com-

pact manifold.

Corollary 6. Let (M, J ) be a compact almost complex manifold. Then the following are equivalent:

(i) (M, J ) is hyperbolic.
(ii) M has the �∗-extension property.

(iii) M contains no J -complex lines.
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