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Formulae for the levels and sublevels of certain quaternion and octonion algebras are
established. Corollaries concerning the equality of levels and sublevels of quaternion
algebras with those of associated octonion algebras are presented.
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r é s u m é

On étudie les sommes de carrés dans certaines algèbres de quaternions et d’octonions et
on établit des formules pour leurs niveaux et sous-niveaux. On en déduit des corollaires
sur l’égalité des niveaux et sous-niveaux des algèbres de quaternions et de ceux d’algèbres
d’octonions associées.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let R be a not necessarily associative ring with unity. The level and sublevel of R are defined as follows:

(level) s(R) = inf
{
n ∈ N | there exist x1, . . . , xn ∈ R such that −1 = x2

1 + · · · + x2
n

}
,

(sublevel) s(R) = inf
{
n ∈ N | there exist x1, . . . , xn+1 ∈ R \ {0} such that 0 = x2

1 + · · · + x2
n+1

}
.

Let F be a field of characteristic different from 2. For a,b ∈ F × , the quaternion algebra (a,b)F is a 4-dimensional F -
vector space with basis {1, i, j,k} satisfying i2 = a, j2 = b and i j = − ji = k. For a,b, c ∈ F × , the octonion algebra (a,b, c)F

is isomorphic to (a,b)F ⊕ (a,b)F e, where e2 = c, with its multiplication being determined by (u1, v1)(u2, v2) = (u1u2 +
cv2 v1, v2u1 + v1u2), where u1, u2, v1, v2 ∈ (a,b)F (here, the symbol denotes conjugation).

The related problems of determining the numbers attainable as the levels and sublevels of quaternion and octonion alge-
bras remain open, and motivate our investigations. Given a,b ∈ F × , we study whether the level (respectively, the sublevel)
of (a,b)F equals that of (a,b, x)F ((x)) .

We will provide a partial answer to these questions, by showing that the respective equalities hold whenever the level
or sublevel of (a,b)F belongs to an associated family of intervals. Moreover, we will show that these equalities always hold
for a particular class of quaternion algebras, conjectured to contain members of level and sublevel n for all n ∈ N (see [4]).

Throughout, we will employ standard concepts and notation regarding quadratic forms. Our notation coincides with that
employed in [3], aside from our usage of n × ϕ to denote the orthogonal sum of n ∈ N copies of a quadratic form ϕ .
Moreover, for a,b ∈ F × , we will let k(a) (respectively k(a,b)) denote the least n ∈ N such that n × 〈1,−a〉 (respectively
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n × 〈1,−a,−b,ab〉) is isotropic (over F , unless stated otherwise). If such an n exists, then n = 2k + 1 for some k ∈ Z.
Otherwise, the quantity is said to be infinite.

In order to obtain the aforementioned results, we will establish characterisations of the levels and sublevels of certain
quaternion and octonion algebras, namely those with “transcendental parameters”. These characterisations provide ana-
logues of a theorem of Tignol and Vast (see [5]), the statement of which is included in the following result:

Theorem 1. Let a,b ∈ F × . Then

(a) s((a, x)F ((x))) = min{s(F (
√

a)),k(a)} and s((a, x)F ((x))) = min{s(F (
√

a)),k(a) − 1},
(b) s((a,b, x)F ((x))) = min{s((a,b)F ),k(a,b)} and s((a,b, x)F ((x))) = min{s((a,b)F ),k(a,b) − 1}.

Proof. (a) The level equality is the aforementioned result from [5]. We will prove the sublevel equality.
As F (

√
a) ⊆ (a, x)F ((x)) , we have that s((a, x)F ((x))) � s(F (

√
a)), which equals s(F (

√
a)). Letting k(a) = n, there exist

γ1, . . . , γn, δ1, . . . , δn ∈ F , not all zero, such that
∑n

t=1 γt
2 − a

∑n
t=1 δt

2 = 0. Hence, we have that
∑n

t=1(γt j + δtk)2 = 0 in
(a, x)F ((x)) , whereby s((a, x)F ((x))) � n − 1. Thus, we may conclude that s((a, x)F ((x))) � min{s(F (

√
a)),k(a) − 1}.

Suppose that s((a, x)F ((x))) = n. Hence, there exist αt, βt , γt , δt ∈ F ((x)), not all zero, such that

n+1∑
t=1

α2
t + a

n+1∑
t=1

β2
t + x

(
n+1∑
t=1

γ 2
t − a

n+1∑
t=1

δ2
t

)
= 0 and

n+1∑
t=1

αtβt =
n+1∑
t=1

αtγt =
n+1∑
t=1

αtδt = 0.

Multiplying across these equations by x2d for a suitable choice of d ∈ Z, we have that

n+1∑
t=1

(
xdαt

)2 + a
n+1∑
t=1

(
xdβt

)2 + x

(
n+1∑
t=1

(
xdγt

)2 − a
n+1∑
t=1

(
xdδt

)2

)
= 0 and

n+1∑
t=1

(
xdαt

)(
xdβt

) = · · · = 0,

where at least one of xdαt, xdβt , xdγt , xdδt ∈ F [[x]] is not divisible by x for some t .
If xdαt or xdβt is not divisible by x for some t , then taking residues modulo x gives that

n+1∑
t=1

(
xdαt

)2 + a
n+1∑
t=1

(
xdβt

)2 = 0 and
n+1∑
t=1

(
xdαt

)(
xdβt

) = 0, whereby s
(

F (
√

a)
) = s

(
F (

√
a)

)
� n.

If xdαt and xdβt are divisible by x for all t , then dividing by x and taking residues modulo x gives that

n+1∑
t=1

(
xdγt

)2 − a
n+1∑
t=1

(
xdδt

)2 = 0, whereby k(a) − 1 � n, completing the proof of (a).

(b) The sublevel equality can be proven by arguing as above. We will prove the level equality.
As (a,b)F ⊂ (a,b, x)F ((x)) , we clearly have that s((a,b, x)F ((x))) � s((a,b)F ). For k(a,b) = n, we have that n ×〈1,−a,−b,ab〉

is isotropic over F , whereby it is isotropic over F ((x)), and thus represents −1
x . Hence, there exist εt , ζt , ηt , ϑt ∈ F ((x)), not all

zero, such that
∑n

t=1 εt
2 −a

∑n
t=1 ζt

2 −b
∑n

t=1 ηt
2 +ab

∑n
t=1 ϑt

2 = −1
x . Thus, we have that

∑n
t=1(εte + ζt ie +ηt je +ϑtke)2 =

−1 in (a,b, x)F ((x)) , whereby s((a,b, x)F ((x))) � n. Hence, we may conclude that s((a,b, x)F ((x))) � min{s((a,b)F ),k(a,b)}.
Suppose that s((a,b, x)F ((x))) = n. Hence, there exist αt, βt , γt , δt , εt , ζt , ηt , ϑt ∈ F ((x)), not all zero, such that

n∑
t=1

α2
t + a

n∑
t=1

β2
t + b

n∑
t=1

γ 2
t − ab

n∑
t=1

δ2
t + x

(
n∑

t=1

ε2
t − a

n∑
t=1

ζ 2
t − b

n∑
t=1

η2
t + ab

n∑
t=1

ϑ2
t

)
= −1

and

n∑
t=1

αtβt =
n∑

t=1

αtγt =
n∑

t=1

αtδt =
n∑

t=1

αtεt =
n∑

t=1

αtζt =
n∑

t=1

αtηt =
n∑

t=1

αtϑt = 0.

If αt , . . . , ϑt ∈ F [[x]] for all t , then, taking residues modulo x, we obtain that s((a,b)F ) � n.
Alternatively, multiplying across these equations by x2d for a suitable choice of d ∈ N, we have that

n∑
t=1

(
xdαt

)2 + · · · − ab
n∑

t=1

(
xdδt

)2 + x

(
n∑

t=1

(
xdεt

)2 − · · · + ab
n∑

t=1

(
xdϑt

)2

)
= −x2d

and
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n∑
t=1

(
xdαt

)(
xdβt

) = · · · =
n∑

t=1

(
xdαt

)(
xdϑt

) = 0,

where at least one of xdαt, xdβt , xdγt , xdδt , xdεt , xdζt , xdηt , xdϑt ∈ F [[x]] is not divisible by x for some t .
If xdαt, xdβt , xdγt or xdδt is not divisible by x for some t , then taking residues modulo x gives that

n∑
t=1

(
xdαt

)2 + · · · − ab
n∑

t=1

(
xdδt

)2 = 0 and
n∑

t=1

(
xdαt

)(
xdβt

) = · · · =
n∑

t=1

(
xdαt

)(
xdδt

) = 0.

Hence s((a,b)F ) � n − 1, whereby s((a,b)F ) � n by [2, Theorem].
If xdαt, xdβt , xdγt and xdδt are divisible by x for all t , then dividing by x and taking residues modulo x gives that

n∑
t=1

(
xdεt

)2 − a
n∑

t=1

(
xdζt

)2 − b
n∑

t=1

(
xdηt

)2 + ab
n∑

t=1

(
xdϑt

)2 = 0, whereby k(a,b) � n. �

Corollary 1. Let a ∈ F × .

(a) s((a, x, y)F ((x))((y))) = min{s(F (
√

a)),k(a)} and s((a, x, y)F ((x))((y))) = min{s(F (
√

a)),k(a) − 1}.
(b) s((x, y, z)F ((x))((y))((z))) = s((x, y, z)F ((x))((y))((z))) = s((x, y)F ((x))((y))) = s((x, y)F ((x))((y))) = s(F ).

Proof. (a) Since k(a, x) over F ((x)) equals k(a) over F , by [3, Ch. VI, Theorem 1.4], an application of Theorem 1(b), followed
by one of Theorem 1(a), establishes these statements.

(b) Invoking [3, Ch. VI, Theorem 1.4], we see that s(F ((x))(
√

x)) = s(F ) and that k(x) over F ((x)) equals s(F ) + 1. Hence,
applications of Corollary 1(a) and Theorem 1(a) establish the result. �

For F a formally real field and a ∈ F × a sum of squares, one sees that k(a) is finite, whereas s(F (
√

a)) is infinite (see
[3, Ch. VIII, Lemma 1.4]). In contrast, the finiteness of k(a,b) encodes an upper bound on s((a,b)F ), allowing us to establish
the following corollary:

Corollary 2. Let k � 0 be an integer and a,b ∈ F × .

(a) If 1 + 	 2
3 · 2k
 < s((a,b)F ) � 2k + 1, then s((a,b, x)F ((x))) = s((a,b)F ).

(b) If 	 2
3 · 2k
 < s((a,b)F ) � 2k, then s((a,b, x)F ((x))) = s((a,b)F ).

Proof. If k(a,b) < 2k + 1, then the Pfister form 2k × 〈1,−a,−b,ab〉 is hyperbolic, whereby its neighbour (1 + 	 2
3 · 2k
) ×

〈a,b,−ab〉 is isotropic, implying that s((a,b)F ) � 	 2
3 · 2k
 and s((a,b)F ) � 1 + 	 2

3 · 2k
. Hence, we must have that k(a,b) �
2k + 1, whereby Theorem 1(b) gives the result. �

The existence of quaternion algebras whose levels and sublevels lie outside of the above intervals was established in [1]
and [4], through the consideration of algebras of the form (x, y)F0(x,y)(ϕ) , where F0 is a formally real field and the quadratic
form ϕ over F0(x, y) is such that 〈1, x, y,−xy〉 ⊂ ϕ ⊂ n × 〈1, x, y,−xy〉 for some n ∈ N. Without placing any restrictions on
the quaternion algebra (a,b)F , we cannot say whether Corollary 2 holds when s((a,b)F ) or s((a,b)F ) take such values.

At present, the existence of quaternion algebras of level 6 (respectively, sublevel 5) remains unknown, prompting us to
ask the following question:

Question. Let F0 be a formally real field and ψ = 8 × 〈1,−x,−y, xy〉 be a quadratic form over F0(x, y). Is the quaternion
algebra (x, y)F0(x,y)(ψ) of level 6 (and thus sublevel 5)?

Since 6 × 〈x, y,−xy〉 is a Pfister neighbour of ψ , it is isotropic over F0(x, y)(ψ), whereby the sublevel and level of
(x, y)F0(x,y)(ψ) are at most 5 and 6 respectively. It seems reasonable to suggest that these upper bounds are attained. Should
this be the case, Theorem 1(b) would imply that the associated octonion algebra (x, y, z)F0(x,y)(ψ)((z)) has strictly smaller
level and sublevel, since k(x, y) = 5 over F0(x, y)(ψ). Thus, we suspect that Corollary 2 does not hold for all possible level
and sublevel values of (a,b)F .

However, restricting ourselves to the aforementioned class of quaternion algebras, conjectured to contain members of
level and sublevel n for all n ∈ N, we can prove the level and sublevel equalities.

Corollary 3. Let F0 be a formally real field and ϕ a quadratic form over F0(x, y) such that 〈1, x, y,−xy〉 ⊂ ϕ ⊂ n × 〈1, x, y,−xy〉 for
some n ∈ N.

Then s((x, y, z)F0(x,y)(ϕ)((z))) = s((x, y)F0(x,y)(ϕ)) and s((x, y, z)F0(x,y)(ϕ)((z))) = s((x, y)F0(x,y)(ϕ)).



242 J. O’Shea / C. R. Acad. Sci. Paris, Ser. I 349 (2011) 239–242
Proof. For S an ordering of F0, let T denote an extension of S to F0(x, y) such that x and y are negative with respect to T .
By [3, Ch. XIII, Theorem 3.1], T extends to an ordering of F0(x, y)(ϕ). However, 〈1,−x,−y, xy〉 is positive definite with
respect to T , whereby k(x, y) = ∞ over F0(x, y)(ϕ). Hence, the result follows from invoking Theorem 1(b). �
Remark. All of the above results also hold if the respective Laurent series fields are replaced by rational function fields.
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