Partial Differential Equations

Comments on two Notes by L. Ma and X. Xu

Commentaires sur deux Notes de L. Ma et X. Xu

Haïm Brezis
Rutgers University, Department of Mathematics, Hill Center, Busch Campus, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA

A R T I C L E IN F O

Article history:
Received 24 January 2011
Accepted 26 January 2011
Available online 18 February 2011
Presented by Haïm Brezis

Abstract

In this Note I discuss some assertions made by L. Ma and X. Xu (2009) [6] and L. Ma (2010) [5], which need to be corrected and supplemented with additional references. © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{R É S U M É}

Dans cette Note j'apporte des corrections et des références supplémentaires à des assertions de L. Ma et X. Xu (2009) [6] et L. Ma (2010) [5].
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Main results

Li Ma and Xingwang Xu [6,5], considered positive smooth solutions u of the equation

$$
\begin{equation*}
\Delta u=u^{q}-u^{-q-2} \quad \text { in } \mathbb{R}^{N} \tag{1}
\end{equation*}
$$

where $q>0$. The following assertion can be found in [5]:
the only solution of (1) is $u \equiv 1$.
It turns out that assertion $\left(A_{q}\right)$ is not quite correct. More precisely, we have
Claim 1. If $q>1$, assertion $\left(A_{q}\right)$ holds and follows easily from the Keller-Osserman theory [3,7].
Claim 2. When $0<q \leqslant 1$, assertion $\left(A_{q}\right)$ fails: Eq. (1) admits many solutions.
First we observe that

$$
\begin{equation*}
\text { any solution of (} 1 \text {) with } q>0 \text { satisfies } u \geqslant 1 \text { in } \mathbb{R}^{N} \text {. } \tag{2}
\end{equation*}
$$

Proof of (2). The argument is standard. Set $f(t)=t^{q}-t^{-q-2}, t>0$. Fix any $x_{0} \in \mathbb{R}^{N}$ and consider the function

$$
u_{\varepsilon}(x)=u(x)+\varepsilon\left|x-x_{0}\right|^{2}, \quad \varepsilon>0, x \in \mathbb{R}^{N}
$$

[^0]Since $u_{\varepsilon}(x) \rightarrow \infty$ as $|x| \rightarrow+\infty, \operatorname{Min}_{\mathbb{R}^{N}} u_{\varepsilon}$ is achieved at some x_{1}. We have

$$
\begin{equation*}
0 \leqslant \Delta u_{\varepsilon}\left(x_{1}\right)=\Delta u\left(x_{1}\right)+2 \varepsilon N=f\left(u\left(x_{1}\right)\right)+2 \varepsilon N \tag{3}
\end{equation*}
$$

On the other hand

$$
u\left(x_{1}\right)+\varepsilon\left|x_{1}-x_{0}\right|^{2}=u_{\varepsilon}\left(x_{1}\right) \leqslant u_{\varepsilon}\left(x_{0}\right)=u\left(x_{0}\right)
$$

and thus $u\left(x_{1}\right) \leqslant u\left(x_{0}\right)$. Since f is increasing we deduce that

$$
\begin{equation*}
f\left(u\left(x_{1}\right)\right) \leqslant f\left(u\left(x_{0}\right)\right) \tag{4}
\end{equation*}
$$

Combining (3) and (4) and letting $\varepsilon \rightarrow 0$ yields $f\left(u\left(x_{0}\right)\right) \geqslant 0$, which implies (2).
Proof of Claim 1. Set $v=u-1 \geqslant 0$. By (1) we have

$$
\begin{equation*}
\Delta v=g(v) \quad \text { in } \mathbb{R}^{N} \tag{5}
\end{equation*}
$$

where $g(v)=(v+1)^{q}-(v+1)^{-q-2}$ satisfies $g(v) \geqslant v^{q}$ for all $v \geqslant 0$, since $q \geqslant 1$. We may then apply the Keller-Osserman theory (see [3,7], the earlier references therein, and also [4,1]), which holds for $q>1$, to conclude that $v \equiv 0$, i.e. $u \equiv 1$.

We now turn to Claim 2, which is an easy consequence of the following:
Lemma 3. Assume $0<q \leqslant 1$. Given any $\alpha>1$, there exists a unique globally defined solution φ of the ODE

$$
\left\{\begin{array}{l}
\varphi^{\prime \prime}=f(\varphi) \quad \text { on } \mathbb{R}, \varphi>1 \text { on } \mathbb{R} \tag{6}\\
\varphi(0)=\alpha, \quad \varphi^{\prime}(0)=0
\end{array}\right.
$$

Moreover $\varphi(-t)=\varphi(t) \forall t \in \mathbb{R}$ and $\varphi(t) \rightarrow+\infty$ as $t \rightarrow+\infty$.
Proof. Set $\tilde{f}(\xi)=f(\xi)$ if $\xi \geqslant 1$ and $\tilde{f}(\xi)=0$ if $\xi \in \mathbb{R}, \xi \leqslant 1$. Note that \tilde{f} is Lipschitz on \mathbb{R} because $q \leqslant 1$. Hence the initial value problem, $\varphi^{\prime \prime}=\tilde{f}(\varphi)$ on $\mathbb{R}, \varphi(0)=\alpha, \varphi^{\prime}(0)=0$ admits a unique globally defined solution. Since $\tilde{f} \geqslant 0$ on \mathbb{R} we deduce that φ is convex and that $\varphi(t) \geqslant \alpha \forall t \in \mathbb{R}$. Therefore φ solves (6) and satisfies the required properties.

Remark 1. The error in [5] comes from the fact that the author invokes Proposition 2 of [6] to assert that solutions of (1) are uniformly bounded. Without providing detailed computations, they use an argument in the spirit of Keller-Osserman which is valid only for $q>1$. Lemma 1 above shows that Proposition 2 of [6] is wrong when $0<q \leqslant 1$.

Remark 2. Using the same argument as in Lemma 1 one can obtain a globally defined solution $\psi(r)$ of the ODE

$$
\left\{\begin{array}{l}
\psi^{\prime \prime}+\frac{N-1}{r} \psi^{\prime}=f(\psi) \quad \text { on }(0,+\infty), \psi>1 \text { on }(0,+\infty) \tag{7}\\
\psi(0)=\alpha, \quad \psi^{\prime}(0)=0
\end{array}\right.
$$

which satisfies in addition $\psi(r) \rightarrow+\infty$ as $r \rightarrow+\infty$. Then $u(x)=\psi(|x|)$ is a solution of (1) such that $u(x) \rightarrow+\infty$ as $|x| \rightarrow \infty$. Here is an interesting

Open problem. Is it true that all solutions u of (1) such that $u(x) \rightarrow+\infty$ as $|x| \rightarrow \infty$ are radial about some point in \mathbb{R}^{N} (and therefore coincide with the solutions constructed above)?

Added in proof. Louis Dupaigne has informed me that he has constructed a counterexample to the above open problem when $q=1$, i.e., there exist non-radial solutions of Eq. (1) which blow up at infinity. The problem remains open when $0<q<1$.

Remark 3. In [5], L. Ma also considers solutions of the Ginzburg-Landau equation

$$
\begin{equation*}
-\Delta u=u\left(1-|u|^{2}\right) \quad \text { in } \mathbb{R}^{N} \tag{8}
\end{equation*}
$$

where $u: \mathbb{R}^{N} \rightarrow \mathbb{R}^{k}$, and he proves that u satisfies $|u| \leqslant 1$ in \mathbb{R}^{N}. This fact was originally established in 1994 by M. Hervé and R.M. Hervé [2] for $N=2$ and $k=2$. Shortly afterwards I noticed (unpublished) that the same conclusion holds for any N and any k as an immediate consequence of the Keller-Osserman theory via Kato's inequality (as in [1]). Indeed $\varphi=\left(|u|^{2}-1\right)^{+}$satisfies, by Kato's inequality,

$$
\begin{aligned}
\Delta \varphi & \geqslant\left(\Delta|u|^{2}\right) \operatorname{sign}^{+}\left(|u|^{2}-1\right)=2\left(u \Delta u+|\nabla u|^{2}\right) \operatorname{sign}^{+}\left(|u|^{2}-1\right) \\
& \geqslant 2|u|^{2}\left(|u|^{2}-1\right) \operatorname{sign}^{+}\left(|u|^{2}-1\right) \quad \text { by }(8) \\
& =2 \varphi(\varphi+1) \geqslant 2 \varphi^{2} .
\end{aligned}
$$

Applying once more Keller-Osserman yields $\varphi \equiv 0$.

Acknowledgement

The author is partially supported by NSF Grant DMS-0802958.

References

[1] H. Brezis, Semilinear equations in \mathbb{R}^{N} without condition at infinity, Appl. Math. Optim. 12 (1984) 271-282.
[2] M. Hervé, R.M. Hervé, Quelques propriétés des solutions de l'équation de Ginzburg-Landau sur un ouvert de \mathbb{R}^{2}, Potential Anal. 5 (1996) $591-609$.
[3] J. Keller, On solutions to $\Delta u=f(u)$, Comm. Pure Appl. Math. 10 (1957) 503-510.
[4] C. Loewner, L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, in: Contributions to Analysis (a collection of papers dedicated to Lipman Bers), Academic Press, 1974, pp. 245-272.
[5] L. Ma, Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg-Landau equation, C. R. Acad. Sci. Paris, Ser. I 348 (2010) 993-996.
[6] L. Ma, X. Xu, Uniform bound and a non-existence result for the Lichnerowicz equation in the whole n-space, C. R. Acad. Sci. Paris, Ser. I 347 (2009) 805-808.
[7] R. Osserman, On the inequality $\Delta u \geqslant f(u)$, Pac. J. Math. 7 (1957) 1641-1647.

[^0]: E-mail address: brezis@math.rutgers.edu.
 1631-073X/\$ - see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2011.01.024

