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In this Note I discuss some assertions made by L. Ma and X. Xu (2009) [6] and L. Ma
(2010) [5], which need to be corrected and supplemented with additional references.
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r é s u m é

Dans cette Note j’apporte des corrections et des références supplémentaires à des
assertions de L. Ma et X. Xu (2009) [6] et L. Ma (2010) [5].

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Main results

Li Ma and Xingwang Xu [6,5], considered positive smooth solutions u of the equation

�u = uq − u−q−2 in R
N , (1)

where q > 0. The following assertion can be found in [5]:

the only solution of (1) is u ≡ 1. (Aq)

It turns out that assertion (Aq) is not quite correct. More precisely, we have

Claim 1. If q > 1, assertion (Aq) holds and follows easily from the Keller–Osserman theory [3,7].

Claim 2. When 0 < q � 1, assertion (Aq) fails: Eq. (1) admits many solutions.

First we observe that

any solution of (1) with q > 0 satisfies u � 1 in R
N . (2)

Proof of (2). The argument is standard. Set f (t) = tq − t−q−2, t > 0. Fix any x0 ∈ R
N and consider the function

uε(x) = u(x) + ε|x − x0|2, ε > 0, x ∈ R
N .
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Since uε(x) → ∞ as |x| → +∞,MinRN uε is achieved at some x1. We have

0 � �uε(x1) = �u(x1) + 2εN = f
(
u(x1)

) + 2εN. (3)

On the other hand

u(x1) + ε|x1 − x0|2 = uε(x1) � uε(x0) = u(x0),

and thus u(x1) � u(x0). Since f is increasing we deduce that

f
(
u(x1)

)
� f

(
u(x0)

)
. (4)

Combining (3) and (4) and letting ε → 0 yields f (u(x0)) � 0, which implies (2). �
Proof of Claim 1. Set v = u − 1 � 0. By (1) we have

�v = g(v) in R
N , (5)

where g(v) = (v + 1)q − (v + 1)−q−2 satisfies g(v) � vq for all v � 0, since q � 1. We may then apply the Keller–Osserman
theory (see [3,7], the earlier references therein, and also [4,1]), which holds for q > 1, to conclude that v ≡ 0, i.e. u ≡ 1. �

We now turn to Claim 2, which is an easy consequence of the following:

Lemma 3. Assume 0 < q � 1. Given any α > 1, there exists a unique globally defined solution ϕ of the ODE
{

ϕ′′ = f (ϕ) on R, ϕ > 1 on R,

ϕ(0) = α, ϕ′(0) = 0.
(6)

Moreover ϕ(−t) = ϕ(t) ∀t ∈ R and ϕ(t) → +∞ as t → +∞.

Proof. Set f̃ (ξ) = f (ξ) if ξ � 1 and f̃ (ξ) = 0 if ξ ∈ R, ξ � 1. Note that f̃ is Lipschitz on R because q � 1. Hence the initial

value problem, ϕ′′ = f̃ (ϕ) on R,ϕ(0) = α,ϕ′(0) = 0 admits a unique globally defined solution. Since f̃ � 0 on R we deduce
that ϕ is convex and that ϕ(t) � α ∀t ∈ R. Therefore ϕ solves (6) and satisfies the required properties. �
Remark 1. The error in [5] comes from the fact that the author invokes Proposition 2 of [6] to assert that solutions of (1)
are uniformly bounded. Without providing detailed computations, they use an argument in the spirit of Keller–Osserman
which is valid only for q > 1. Lemma 1 above shows that Proposition 2 of [6] is wrong when 0 < q � 1.

Remark 2. Using the same argument as in Lemma 1 one can obtain a globally defined solution ψ(r) of the ODE
{

ψ ′′ + N−1
r ψ ′ = f (ψ) on (0,+∞), ψ > 1 on (0,+∞),

ψ(0) = α, ψ ′(0) = 0,
(7)

which satisfies in addition ψ(r) → +∞ as r → +∞. Then u(x) = ψ(|x|) is a solution of (1) such that u(x) → +∞ as
|x| → ∞. Here is an interesting

Open problem. Is it true that all solutions u of (1) such that u(x) → +∞ as |x| → ∞ are radial about some point in R
N

(and therefore coincide with the solutions constructed above)?

Added in proof. Louis Dupaigne has informed me that he has constructed a counterexample to the above open problem
when q = 1, i.e., there exist non-radial solutions of Eq. (1) which blow up at infinity. The problem remains open when
0 < q < 1.

Remark 3. In [5], L. Ma also considers solutions of the Ginzburg–Landau equation

−�u = u
(
1 − |u|2) in R

N , (8)

where u : R
N → R

k , and he proves that u satisfies |u| � 1 in R
N . This fact was originally established in 1994 by M. Hervé

and R.M. Hervé [2] for N = 2 and k = 2. Shortly afterwards I noticed (unpublished) that the same conclusion holds for
any N and any k as an immediate consequence of the Keller–Osserman theory via Kato’s inequality (as in [1]). Indeed
ϕ = (|u|2 − 1)+ satisfies, by Kato’s inequality,
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�ϕ �
(
�|u|2) sign+(|u|2 − 1

) = 2
(
u�u + |∇u|2) sign+(|u|2 − 1

)
� 2|u|2(|u|2 − 1

)
sign+(|u|2 − 1

)
by (8)

= 2ϕ(ϕ + 1) � 2ϕ2.

Applying once more Keller–Osserman yields ϕ ≡ 0.
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