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Let G be a connected reductive algebraic group defined over an algebraically closed field of
positive characteristic. We study a generalization of the notion of G-complete reducibility
in the context of Steinberg endomorphisms of G . Our main theorem extends a special case
of a rationality result in this setting.
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r é s u m é

Soit G un groupe algébrique réductible connexe défini sur un corps algébriquement clos
de caractéristique positive. Dans cette Note on étudie une généralisation de la notion
de réductibilité G-complète dans le contexte des endomorphismes de Steinberg de G . Le
théorème fondamental de la Note généralise un cas particulier d’un résultat de rationalité.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let p be a prime number and let k = Fp be the algebraic closure of the field of p elements. Let G be a connected reduc-
tive linear algebraic group defined over k and let H be a closed subgroup of G . Let Fp ⊆ k′ ⊆ k be a field extension of Fp .
Following Serre [12], we say that a k′-defined subgroup H of G is G-completely reducible over k′ provided that whenever H
is contained in a k′-defined parabolic subgroup P of G , it is contained in a k′-defined Levi subgroup of P . If k′ = k, then
H is G-completely reducible over k′ if and only if H is G-completely reducible (or G-cr for short). For an overview of this
concept see for instance [11] and [12].

The starting point for our discussion is the following special case of the rationality result [1, Theorem 5.8]. Let q be a
power of p and let Fq be the field of q elements.

Theorem 1.1. Suppose that both G and H are defined over Fq. Then H is G-completely reducible if and only if it is G-completely
reducible over Fq.

Let σ : G → G be a Steinberg endomorphism of G , i.e. a surjective endomorphism of G that fixes only finitely many
points, see Steinberg [14] for a detailed discussion (for this terminology, see [6, Definition 1.15.1b]). The set of all Steinberg
endomorphisms of G is a subset of all isogenies G → G (see [14, 7.1(a)]) that encompasses in particular all (generalized)
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Frobenius endomorphisms, i.e. endomorphisms of G some power of which are Frobenius endomorphisms corresponding to
some Fq-rational structure on G .

Example 1.2. Let F1, F2 be the Frobenius maps of G = SL2 given by raising coefficients to the pth and p2th powers,
respectively. Then the map σ = F1 × F2 : G × G → G × G is a Steinberg morphism of G × G that is not a (generalized)
Frobenius morphism, cf. the remark following [6, Theorem 2.1.11].

If G is almost simple, then σ is a (generalized) Frobenius map (e.g. see [6, Theorem 2.1.11]), and the possibilities for σ
are well known ([14, §11], e.g. see [7, Theorem 1.4]): σ is conjugate to either σq , τσq , τ ′σq or τ ′ , where σq is a standard
Frobenius morphism, τ is an automorphism of algebraic groups coming from a graph automorphism of types An , Dn or E6,
and τ ′ is a bijective endomorphism coming from a graph automorphism of type B2 (p = 2), F4 (p = 2) or G2 (p = 3).

Example 1.3. If G is not simple, then a generalized Frobenius map may fail to factor into a field and a graph automorphism
as stated above. For example, let p = 2 and let H1, H2 be simple, simply connected groups of type Bn and Cn (n � 3),
respectively. Then there are special isogenies φ1 : H1 → H2 and φ2 : H2 → H1 whose composites φ1 ◦ φ2 and φ2 ◦ φ1 are
standard Frobenius maps with respect to p on H2, respectively H1, see [4, p. 5 of Expose 24]. Let G = H1 × H2 and define
σ : G → G by σ(h1,h2) = (φ2(h2),φ1(h1)). Then σ is an example of such a more complicated generalized Frobenius map.

We now give an extension of Serre’s notion of G-complete reducibility in this setting of Steinberg endomorphisms: Let
σ be a Steinberg endomorphism of G and let H be a subgroup of G . We say that H is σ -completely reducible (or σ -cr for
short), provided that whenever H lies in a σ -stable parabolic subgroup P of G , it lies in a σ -stable Levi subgroup of P . This
notion is motivated as follows: If σq is a standard Frobenius morphism of G , then a subgroup H of G is defined over Fq if
and only if it is σq-stable and if so, H is G-completely reducible over Fq if and only if it is σq-completely reducible. In view
of this new notion, the goal of this note is the following generalization of Theorem 1.1 to arbitrary Steinberg endomorphisms
of G (the special case of Theorem 1.4 when σ = σq gives Theorem 1.1).

Theorem 1.4. Let σ be a Steinberg endomorphism of G. Let H be a σ -stable subgroup of G. Then H is G-completely reducible if and
only if H is σ -completely reducible.

Theorem 1.4 follows from Theorems 2.4 and 2.5 proved in the next section.

Example 1.5. Theorem 1.4 is false without the σ -stability condition on H . For instance, a maximal torus T of G is always
G-cr, cf. [1, Lemma 2.6]. But it may happen that T is contained in a σ -stable Borel subgroup of G , without being itself
σ -stable. Then T clearly fails to be σ -cr. In the other direction, G may contain a maximal parabolic subgroup P of G that is
not σ -stable. The only σ -stable parabolic subgroup of G containing P is G itself. Then P is σ -cr for trivial reasons, whereas
a proper parabolic subgroup of G is not G-cr.

Remark 1.6. Even if H is not σ -stable, Theorem 1.4 gives some information about the notion of σ -complete reducibility, as
follows. Let Hσ be the algebraic subgroup of G generated by all translates σ i H , i � 0. Then Hσ is σ -stable and contained
in the same σ -stable subgroups of G as H . In particular, H is σ -cr if and only if Hσ is σ -cr. Thus, by Theorem 1.4, this is
equivalent to Hσ being G-cr.

2. Proof of Theorem 1.4

In addition to the notation already fixed in the Introduction, σ : G → G is always a Steinberg endomorphism of G and
from now on the subgroup H of G is assumed to be σ -stable. We begin with a generalization of (a special case of) [8,
Proposition 2.2 and Remark 2.4]. The proof of Proposition 2.1 consists in a reduction to the case when H is finite, covered
in [8, Proposition 2.2 and Remark 2.4].

Proposition 2.1. If H is not G-completely reducible, then there exists a proper σ -stable parabolic subgroup of G containing H.

Proof. First we assume that G is almost simple. We want to reduce to the case where H is a finite, σ -stable subgroup of G ,
and then apply [8, Proposition 2.2 and Remark 2.4]. Since G is almost simple, we can assume that σm = σq is a standard
Frobenius map for some positive integer m. We choose a closed embedding G → GLn(k) so that σq is the restriction of the
standard Frobenius map of GLn(k) that raises coefficients to the qth power (see [5, Proposition 4.1.11]). For r ∈ Z, r � 1, let
H̃(r) = H ∩ GLn(Fqr! ). Then we can write H as the directed union of finite subgroups H = ⋃

r�1 H̃(r). Note that the union is
indeed directed, that is

H̃(r) ⊆ H̃(r + 1) ∀r � 1. (2.2)
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We wish to construct a similar, but σ -stable filtration of H . For this purpose we set H(r) = ⋂m−1
l=0 σ l H̃(r). Then each

H(r) is a finite, σ -stable subgroup of H (for the σ -stability, we use that each H̃(r) is stable under σm = σq). Moreover,
we claim that H is the directed union H = ⋃

r�1 H(r). Indeed, if h ∈ H , then the identities H = σ H and H = ⋃
r�1 H̃(r)

imply that for each l = 0, . . . ,m − 1 we can find some rl such that h ∈ σ l H̃(rl). But then (2.2) implies that h ∈ H(r) for
r � max{r0, . . . , rm−1}. It follows from the argument in the proof of [1, Lemma 2.10] that there is an integer r′ so that H(r′)
has the following property: H is contained in a parabolic subgroup P of G (respectively a Levi subgroup L of G) if and
only if H(r′) is contained in P (respectively in L). Therefore, if H is not G-cr, then neither is H(r′), and we can apply [8,
Proposition 2.2 and Remark 2.4] to obtain a proper σ -stable parabolic subgroup P of G that contains H(r′). But then P also
contains H .

Next we drop the simplicity assumption on G . Then we can use the almost simple components of G to reduce to the
almost simple case: Let π : G ′ := Z(G)◦ × G1 × · · · × Gr → G be the product map, where G1, . . . , Gr are the almost simple
components of the semisimple group [G, G] and let πi : G ′ → Gi be the projection (1 � i � r). Then π is an isogeny. Let
H ′ = π−1(H). Using [1, Lemma 2.12] and the fact that Z(G)◦ is a torus, we find that there is some index i such that
Hi := πi(H ′) ⊆ Gi is not Gi -cr. We can assume that i = 1. We are now in the situation of the first part of the proof (for
H1 ⊆ G1), except that we have yet to specify a Steinberg endomorphism of G1 that stabilizes H1. Since σ stabilizes [G, G]
and maps components to components [4, Expose 18, Proposition 2], we can assume that σ permutes G1, . . . , Gs cyclically
for some s � r. Moreover, σ stabilizes Z(G)◦ = R(G) (because σ is an isogeny). Using the restrictions σ |Z(G)◦ and σ |[G,G] , we
can define a Steinberg endomorphism σ ′ : G ′ → G ′ of G ′ such that π ◦ σ ′ = σ ◦ π . We denote by H ′′ the image (under the
projection) of H ′ in G ′′ := G1 × · · · × Gs . Now let τ = σ s|G1 : G1 → G1 denote the generalized Frobenius map on G1 induced
by σ [6, Theorems 2.1.2(g) and 2.1.11]. Then H1 is τ -stable, since H is σ s-stable. We apply the first part of the proof to
H1 ⊆ G1 to obtain a proper τ -stable parabolic subgroup P1 of G1 containing H1. Then P ′′ := P1 ×σ P1 × · · · ×σ s−1 P1 ⊆ G ′′
is a proper σ ′|G ′′ -stable parabolic subgroup of G ′′ [13, Corollary 6.2.8]. The bijectivity of σ s|Hi : Hi → Hi for 1 � i � s
implies that Hi = σ i−1 H1 for 1 � i � s. We get that P ′′ contains H ′′ , since we have H ′′ ⊆ H1 × H2 × · · · × Hs and H1 ⊆ P1.
Consequently, P ′ = Z(G)◦ × P ′′ × Gs+1 × · · · × Gr is a proper σ ′-stable parabolic subgroup of G ′ containing H ′ . Finally,
P = π(P ′) is a proper σ -stable parabolic subgroup of G containing H , as desired. �
Remark 2.3. In [8, Proposition 2.2 and Remark 2.4], Liebeck, Martin and Shalev prove the following: Let G be an almost
simple algebraic group over k as above. Let Aut#(G) denote the group of abstract automorphisms of G that is generated by
inner automorphisms of G , together with pi power field morphisms (i � 1), and abstract graph automorphisms (which may
include the bijective algebraic endomorphisms coming from a graph automorphism of type B2 (p = 2), F4 (p = 2) or G2
(p = 3)). (Note that Aut#(G) is an extension of the group Aut+(G) from [8, p. 455].) Let S be a subgroup of Aut#(G) and
suppose that H ⊆ G is a finite, S-stable subgroup that is not G-cr. Then H is contained in a proper S-invariant parabolic
subgroup of G (note that the notion of strongly reductive subgroups in G is equivalent to the notion of G-completely
reducible subgroups, cf. [1, Theorem 3.1]). If we take S to be generated by a (generalized) Frobenius endomorphism σ of G ,
then we get the assertion of Proposition 2.1 for G almost simple and H finite.

Theorem 2.4. If H is σ -completely reducible, then it is G-completely reducible.

Proof. If H is not contained in any proper σ -stable parabolic subgroup of G , then it is G-cr according to Proposition 2.1. So
we can assume that there is a proper σ -stable parabolic subgroup P of G containing H . We choose P minimal with these
properties. Since H is σ -cr, it is contained in a σ -stable Levi subgroup L of P . Suppose there is a proper σ -stable parabolic
subgroup P L of L containing H . Then P ′ = P L Ru(P ) � P is another parabolic subgroup of G (see [3, Proposition 4.4(c)])
containing H , and P ′ is σ -stable (σ stabilizes Ru(P ) as any isogeny does). But this contradicts our choice of P . So we can
use Proposition 2.1 again to deduce that H is L-cr, which in turn implies that H is G-cr [1, Corollary 3.22]. �

For the converse of Theorem 2.4 we argue as in the last part of the proof of [9, Theorem 9]. But first we recall a
parametrization of the parabolic and Levi subgroups of G in terms of cocharacters of G , e.g. see [1, Lemma 2.4]: Given a
parabolic subgroup P of G and any Levi subgroup L of P , there exists some cocharacter λ of G such that P and L are of the
form P = Pλ = {g ∈ G | limt→0 λ(t)gλ(t)−1 exists} and L = Lλ = CG(λ(k∗)), respectively. The unipotent radical of Pλ is then
given by Ru(Pλ) = {g ∈ G | limt→0 λ(t)gλ(t)−1 = 1}.

Theorem 2.5. If H is G-completely reducible, then it is σ -completely reducible.

Proof. Suppose that P is a σ -stable parabolic subgroup of G containing H . Since H is G-cr, there is some Levi subgroup
L of P that contains H . Let U = Ru(P ). Then Λ = {uLu−1 | u ∈ U , H ⊆ uLu−1} is the set of all Levi subgroups of P that
contain H . Clearly, Λ is σ -stable, since H and P are. We need to prove that Λ contains an element fixed by σ .

If uLu−1 is in Λ, then u−1 Hu ⊆ L ∩ U H = H , so that u normalizes H . In fact, u centralizes H , since [NU (H), H] ⊆
H ∩ U = {1}. So the group C = CU (H) acts transitively on Λ. We claim that C is connected. In order to prove this, write
P = Pλ , L = Lλ and U = Ru(Pλ) for some suitable cocharacter λ of G . The torus λ(k∗) normalizes CG(H) (because H is
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contained in L) and U , hence it normalizes C . Whence, for any fixed c ∈ C , the map φc : k∗ → C , given by t 
→ λ(t)cλ(t)−1,
is well-defined. Moreover, C ⊆ U implies that φc extends to a morphism φ̂c : k → C that maps 0 to 1 and 1 to c. Since the
image of φ̂c is connected, we get c ∈ C◦ . It follows that C = C◦ . But now we can apply the Lang–Steinberg theorem (see [14,
Theorem 10.1]) to conclude that Λ contains an element fixed by σ . �
Remark 2.6. We conclude by outlining a short alternative approach to Proposition 2.1; the latter was crucial in the proof
of Theorem 2.4. This variant utilizes the so-called Centre Conjecture for spherical buildings due to J. Tits from the 1950s.
This deep conjecture has recently been established by work of Leeb and Ramos-Cuevas, e.g. see [2, §2] and the references
therein for further details. This conjecture states that in the building � = �(G) of G any convex contractible subcomplex
Σ has a simplex which is fixed under any building automorphism of � which stabilizes Σ as a subcomplex. Such a fixed
simplex is often referred to as a centre giving this conjecture its name. Here is a sketch of a building theoretic alternative
to the proof of Proposition 2.1: Let H be a σ -stable subgroup of G which is not G-cr. Consider the subcomplex �H of
H-fixed points of the building �, i.e., �H corresponds to the set of all parabolic subgroups of G that contain H . Note that
�H is always convex [12, Proposition 3.1] and since H is not G-cr, �H is also contractible [10, Theorem 2]. The Steinberg
morphism σ of G affords a building automorphism of �, also denoted by σ . Since H is σ -stable, so is �H . Now since �H

is convex and contractible, the Centre Conjecture asserts the existence of a centre of �H with respect to the action of σ
which corresponds to a proper parabolic subgroup of G which is σ -stable and contains H . This is precisely the conclusion
of Proposition 2.1.
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