

Group Theory

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Complete reducibility and Steinberg endomorphisms

Réductibilité complète et endomorphismes de Steinberg

Sebastian Herpel^a, Gerhard Röhrle^a, Daniel Gold^b

^a Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany

^b School of Mathematics, University of Southampton, Southampton, SO17 1BJ, UK

ARTICLE INFO

Article history: Received 27 December 2010 Accepted after revision 8 February 2011 Available online 24 February 2011

Presented by Jean-Pierre Serre

ABSTRACT

Let G be a connected reductive algebraic group defined over an algebraically closed field of positive characteristic. We study a generalization of the notion of G-complete reducibility in the context of Steinberg endomorphisms of G. Our main theorem extends a special case of a rationality result in this setting.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soit *G* un groupe algébrique réductible connexe défini sur un corps algébriquement clos de caractéristique positive. Dans cette Note on étudie une généralisation de la notion de réductibilité *G*-complète dans le contexte des endomorphismes de Steinberg de *G*. Le théorème fondamental de la Note généralise un cas particulier d'un résultat de rationalité. © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let *p* be a prime number and let $k = \overline{\mathbb{F}}_p$ be the algebraic closure of the field of *p* elements. Let *G* be a connected reductive linear algebraic group defined over *k* and let *H* be a closed subgroup of *G*. Let $\mathbb{F}_p \subseteq k' \subseteq k$ be a field extension of \mathbb{F}_p . Following Serre [12], we say that a *k'*-defined subgroup *H* of *G* is *G*-completely reducible over *k'* provided that whenever *H* is contained in a *k'*-defined parabolic subgroup *P* of *G*, it is contained in a *k'*-defined Levi subgroup of *P*. If k' = k, then *H* is *G*-completely reducible over *k'* if and only if *H* is *G*-completely reducible (or *G*-cr for short). For an overview of this concept see for instance [11] and [12].

The starting point for our discussion is the following special case of the rationality result [1, Theorem 5.8]. Let q be a power of p and let \mathbb{F}_q be the field of q elements.

Theorem 1.1. Suppose that both *G* and *H* are defined over \mathbb{F}_q . Then *H* is *G*-completely reducible if and only if it is *G*-completely reducible over \mathbb{F}_q .

Let $\sigma : G \to G$ be a *Steinberg endomorphism* of *G*, i.e. a surjective endomorphism of *G* that fixes only finitely many points, see Steinberg [14] for a detailed discussion (for this terminology, see [6, Definition 1.15.1b]). The set of all Steinberg endomorphisms of *G* is a subset of all isogenies $G \to G$ (see [14, 7.1(a)]) that encompasses in particular all (generalized)

E-mail addresses: sebastian.herpel@rub.de (S. Herpel), gerhard.roehrle@rub.de (G. Röhrle), dg0666@gmail.com (D. Gold).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2011.02.008

Frobenius endomorphisms, i.e. endomorphisms of *G* some power of which are Frobenius endomorphisms corresponding to some \mathbb{F}_q -rational structure on *G*.

Example 1.2. Let F_1 , F_2 be the Frobenius maps of $G = SL_2$ given by raising coefficients to the *p*th and p^2 th powers, respectively. Then the map $\sigma = F_1 \times F_2 : G \times G \to G \times G$ is a Steinberg morphism of $G \times G$ that is not a (generalized) Frobenius morphism, cf. the remark following [6, Theorem 2.1.11].

If *G* is almost simple, then σ is a (generalized) Frobenius map (e.g. see [6, Theorem 2.1.11]), and the possibilities for σ are well known ([14, §11], e.g. see [7, Theorem 1.4]): σ is conjugate to either σ_q , $\tau \sigma_q$, $\tau' \sigma_q$ or τ' , where σ_q is a standard Frobenius morphism, τ is an automorphism of algebraic groups coming from a graph automorphism of types A_n , D_n or E_6 , and τ' is a bijective endomorphism coming from a graph automorphism of type B_2 (p = 2), F_4 (p = 2) or G_2 (p = 3).

Example 1.3. If *G* is not simple, then a generalized Frobenius map may fail to factor into a field and a graph automorphism as stated above. For example, let p = 2 and let H_1 , H_2 be simple, simply connected groups of type B_n and C_n ($n \ge 3$), respectively. Then there are special isogenies $\phi_1 : H_1 \rightarrow H_2$ and $\phi_2 : H_2 \rightarrow H_1$ whose composites $\phi_1 \circ \phi_2$ and $\phi_2 \circ \phi_1$ are standard Frobenius maps with respect to p on H_2 , respectively H_1 , see [4, p. 5 of Expose 24]. Let $G = H_1 \times H_2$ and define $\sigma : G \rightarrow G$ by $\sigma(h_1, h_2) = (\phi_2(h_2), \phi_1(h_1))$. Then σ is an example of such a more complicated generalized Frobenius map.

We now give an extension of Serre's notion of *G*-complete reducibility in this setting of Steinberg endomorphisms: Let σ be a Steinberg endomorphism of *G* and let *H* be a subgroup of *G*. We say that *H* is σ -completely reducible (or σ -cr for short), provided that whenever *H* lies in a σ -stable parabolic subgroup *P* of *G*, it lies in a σ -stable Levi subgroup of *P*. This notion is motivated as follows: If σ_q is a standard Frobenius morphism of *G*, then a subgroup *H* of *G* is defined over \mathbb{F}_q if and only if it is σ_q -completely reducible. In view of this new notion, the goal of this note is the following generalization of Theorem 1.1 to arbitrary Steinberg endomorphisms of *G* (the special case of Theorem 1.4 when $\sigma = \sigma_q$ gives Theorem 1.1).

Theorem 1.4. Let σ be a Steinberg endomorphism of *G*. Let *H* be a σ -stable subgroup of *G*. Then *H* is *G*-completely reducible if and only if *H* is σ -completely reducible.

Theorem 1.4 follows from Theorems 2.4 and 2.5 proved in the next section.

Example 1.5. Theorem 1.4 is false without the σ -stability condition on H. For instance, a maximal torus T of G is always G-cr, cf. [1, Lemma 2.6]. But it may happen that T is contained in a σ -stable Borel subgroup of G, without being itself σ -stable. Then T clearly fails to be σ -cr. In the other direction, G may contain a maximal parabolic subgroup P of G that is not σ -stable. The only σ -stable parabolic subgroup of G containing P is G itself. Then P is σ -cr for trivial reasons, whereas a proper parabolic subgroup of G is not G-cr.

Remark 1.6. Even if *H* is not σ -stable, Theorem 1.4 gives some information about the notion of σ -complete reducibility, as follows. Let \overline{H}^{σ} be the algebraic subgroup of *G* generated by all translates $\sigma^{i}H$, $i \ge 0$. Then \overline{H}^{σ} is σ -stable and contained in the same σ -stable subgroups of *G* as *H*. In particular, *H* is σ -cr if and only if \overline{H}^{σ} is σ -cr. Thus, by Theorem 1.4, this is equivalent to \overline{H}^{σ} being *G*-cr.

2. Proof of Theorem 1.4

In addition to the notation already fixed in the Introduction, $\sigma : G \to G$ is always a Steinberg endomorphism of *G* and from now on the subgroup *H* of *G* is assumed to be σ -stable. We begin with a generalization of (a special case of) [8, Proposition 2.2 and Remark 2.4]. The proof of Proposition 2.1 consists in a reduction to the case when *H* is finite, covered in [8, Proposition 2.2 and Remark 2.4].

Proposition 2.1. If H is not G-completely reducible, then there exists a proper σ -stable parabolic subgroup of G containing H.

Proof. First we assume that *G* is almost simple. We want to reduce to the case where *H* is a finite, σ -stable subgroup of *G*, and then apply [8, Proposition 2.2 and Remark 2.4]. Since *G* is almost simple, we can assume that $\sigma^m = \sigma_q$ is a standard Frobenius map for some positive integer *m*. We choose a closed embedding $G \to GL_n(k)$ so that σ_q is the restriction of the standard Frobenius map of $GL_n(k)$ that raises coefficients to the *q*th power (see [5, Proposition 4.1.11]). For $r \in \mathbb{Z}, r \ge 1$, let $\tilde{H}(r) = H \cap GL_n(\mathbb{F}_{q^{r!}})$. Then we can write *H* as the directed union of finite subgroups $H = \bigcup_{r \ge 1} \tilde{H}(r)$. Note that the union is indeed directed, that is

$$\tilde{H}(r) \subseteq \tilde{H}(r+1) \quad \forall r \ge 1.$$
(2.2)

We wish to construct a similar, but σ -stable filtration of H. For this purpose we set $H(r) = \bigcap_{l=0}^{m-1} \sigma^l \tilde{H}(r)$. Then each H(r) is a finite, σ -stable subgroup of H (for the σ -stability, we use that each $\tilde{H}(r)$ is stable under $\sigma^m = \sigma_q$). Moreover, we claim that H is the directed union $H = \bigcup_{r \ge 1} H(r)$. Indeed, if $h \in H$, then the identities $H = \sigma H$ and $H = \bigcup_{r \ge 1} \tilde{H}(r)$ imply that for each $l = 0, \ldots, m-1$ we can find some r_l such that $h \in \sigma^l \tilde{H}(r_l)$. But then (2.2) implies that $h \in H(r)$ for $r \ge \max\{r_0, \ldots, r_{m-1}\}$. It follows from the argument in the proof of [1, Lemma 2.10] that there is an integer r' so that H(r') has the following property: H is contained in a parabolic subgroup P of G (respectively a Levi subgroup L of G) if and only if H(r') is contained in P (respectively in L). Therefore, if H is not G-cr, then neither is H(r'), and we can apply [8, Proposition 2.2 and Remark 2.4] to obtain a proper σ -stable parabolic subgroup P of G that contains H(r'). But then P also contains H.

Next we drop the simplicity assumption on G. Then we can use the almost simple components of G to reduce to the almost simple case: Let $\pi: G':= Z(G)^{\circ} \times G_1 \times \cdots \times G_r \to G$ be the product map, where G_1, \ldots, G_r are the almost simple components of the semisimple group [G, G] and let $\pi_i : G' \to G_i$ be the projection $(1 \le i \le r)$. Then π is an isogeny. Let $H' = \pi^{-1}(H)$. Using [1, Lemma 2.12] and the fact that $Z(G)^{\circ}$ is a torus, we find that there is some index *i* such that $H_i := \pi_i(H') \subseteq G_i$ is not G_i -cr. We can assume that i = 1. We are now in the situation of the first part of the proof (for $H_1 \subseteq G_1$, except that we have yet to specify a Steinberg endomorphism of G_1 that stabilizes H_1 . Since σ stabilizes [G, G]and maps components to components [4, Expose 18, Proposition 2], we can assume that σ permutes G_1, \ldots, G_s cyclically for some $s \leq r$. Moreover, σ stabilizes $Z(G)^{\circ} = R(G)$ (because σ is an isogeny). Using the restrictions $\sigma|_{Z(G)^{\circ}}$ and $\sigma|_{[G,G]}$, we can define a Steinberg endomorphism $\sigma': G' \to G'$ of G' such that $\pi \circ \sigma' = \sigma \circ \pi$. We denote by H'' the image (under the projection) of H' in $G'' := G_1 \times \cdots \times G_s$. Now let $\tau = \sigma^s|_{G_1} : G_1 \to G_1$ denote the generalized Frobenius map on G_1 induced by σ [6, Theorems 2.1.2(g) and 2.1.11]. Then H_1 is τ -stable, since H is σ^s -stable. We apply the first part of the proof to $H_1 \subseteq G_1$ to obtain a proper τ -stable parabolic subgroup P_1 of G_1 containing H_1 . Then $P'' := P_1 \times \sigma P_1 \times \cdots \times \sigma^{s-1} P_1 \subseteq G''$ is a proper $\sigma'|_{G''}$ -stable parabolic subgroup of G'' [13, Corollary 6.2.8]. The bijectivity of $\sigma^{s}|_{H_i}: H_i \to H_i$ for $1 \leq i \leq s$ implies that $H_i = \sigma^{i-1}H_1$ for $1 \le i \le s$. We get that P'' contains H'', since we have $H'' \subseteq H_1 \times H_2 \times \cdots \times H_s$ and $H_1 \subseteq P_1$. Consequently, $P' = Z(G)^{\circ} \times P'' \times G_{s+1} \times \cdots \times G_r$ is a proper σ' -stable parabolic subgroup of G' containing H'. Finally, $P = \pi(P')$ is a proper σ -stable parabolic subgroup of G containing H, as desired. \Box

Remark 2.3. In [8, Proposition 2.2 and Remark 2.4], Liebeck, Martin and Shalev prove the following: Let *G* be an almost simple algebraic group over *k* as above. Let Aut[#](*G*) denote the group of abstract automorphisms of *G* that is generated by inner automorphisms of *G*, together with p^i power field morphisms ($i \ge 1$), and abstract graph automorphisms (which may include the bijective algebraic endomorphisms coming from a graph automorphism of type B_2 (p = 2), F_4 (p = 2) or G_2 (p = 3)). (Note that Aut[#](*G*) is an extension of the group Aut⁺(*G*) from [8, p. 455].) Let *S* be a subgroup of Aut[#](*G*) and suppose that $H \subseteq G$ is a finite, *S*-stable subgroup that is not *G*-cr. Then *H* is contained in a proper *S*-invariant parabolic subgroup of *G* (note that the notion of strongly reductive subgroups in *G* is equivalent to the notion of *G*-completely reducible subgroups, cf. [1, Theorem 3.1]). If we take *S* to be generated by a (generalized) Frobenius endomorphism σ of *G*, then we get the assertion of Proposition 2.1 for *G* almost simple and *H* finite.

Theorem 2.4. If *H* is σ -completely reducible, then it is *G*-completely reducible.

Proof. If *H* is not contained in any proper σ -stable parabolic subgroup of *G*, then it is *G*-cr according to Proposition 2.1. So we can assume that there is a proper σ -stable parabolic subgroup *P* of *G* containing *H*. We choose *P* minimal with these properties. Since *H* is σ -cr, it is contained in a σ -stable Levi subgroup *L* of *P*. Suppose there is a proper σ -stable parabolic subgroup *P*_L of *L* containing *H*. Then $P' = P_L R_u(P) \subsetneq P$ is another parabolic subgroup of *G* (see [3, Proposition 4.4(c)]) containing *H*, and *P'* is σ -stable (σ stabilizes $R_u(P)$ as any isogeny does). But this contradicts our choice of *P*. So we can use Proposition 2.1 again to deduce that *H* is *L*-cr, which in turn implies that *H* is *G*-cr [1, Corollary 3.22]. \Box

For the converse of Theorem 2.4 we argue as in the last part of the proof of [9, Theorem 9]. But first we recall a parametrization of the parabolic and Levi subgroups of *G* in terms of cocharacters of *G*, e.g. see [1, Lemma 2.4]: Given a parabolic subgroup *P* of *G* and any Levi subgroup *L* of *P*, there exists some cocharacter λ of *G* such that *P* and *L* are of the form $P = P_{\lambda} = \{g \in G \mid \lim_{t\to 0} \lambda(t)g\lambda(t)^{-1} \text{ exists}\}$ and $L = L_{\lambda} = C_G(\lambda(k^*))$, respectively. The unipotent radical of P_{λ} is then given by $R_u(P_{\lambda}) = \{g \in G \mid \lim_{t\to 0} \lambda(t)g\lambda(t)^{-1} = 1\}$.

Theorem 2.5. If *H* is *G*-completely reducible, then it is σ -completely reducible.

Proof. Suppose that *P* is a σ -stable parabolic subgroup of *G* containing *H*. Since *H* is *G*-cr, there is some Levi subgroup *L* of *P* that contains *H*. Let $U = R_u(P)$. Then $\Lambda = \{uLu^{-1} \mid u \in U, H \subseteq uLu^{-1}\}$ is the set of all Levi subgroups of *P* that contain *H*. Clearly, Λ is σ -stable, since *H* and *P* are. We need to prove that Λ contains an element fixed by σ .

If uLu^{-1} is in Λ , then $u^{-1}Hu \subseteq L \cap UH = H$, so that u normalizes H. In fact, u centralizes H, since $[N_U(H), H] \subseteq H \cap U = \{1\}$. So the group $C = C_U(H)$ acts transitively on Λ . We claim that C is connected. In order to prove this, write $P = P_{\lambda}$, $L = L_{\lambda}$ and $U = R_u(P_{\lambda})$ for some suitable cocharacter λ of G. The torus $\lambda(k^*)$ normalizes $C_G(H)$ (because H is

contained in *L*) and *U*, hence it normalizes *C*. Whence, for any fixed $c \in C$, the map $\phi_c : k^* \to C$, given by $t \mapsto \lambda(t)c\lambda(t)^{-1}$, is well-defined. Moreover, $C \subseteq U$ implies that ϕ_c extends to a morphism $\hat{\phi}_c : k \to C$ that maps 0 to 1 and 1 to *c*. Since the image of $\hat{\phi}_c$ is connected, we get $c \in C^\circ$. It follows that $C = C^\circ$. But now we can apply the Lang–Steinberg theorem (see [14, Theorem 10.1]) to conclude that Λ contains an element fixed by σ . \Box

Remark 2.6. We conclude by outlining a short alternative approach to Proposition 2.1; the latter was crucial in the proof of Theorem 2.4. This variant utilizes the so-called *Centre Conjecture* for spherical buildings due to J. Tits from the 1950s. This deep conjecture has recently been established by work of Leeb and Ramos-Cuevas, e.g. see [2, §2] and the references therein for further details. This conjecture states that in the building $\Delta = \Delta(G)$ of *G* any convex contractible subcomplex Σ has a simplex which is fixed under any building automorphism of Δ which stabilizes Σ as a subcomplex. Such a fixed simplex is often referred to as a *centre* giving this conjecture its name. Here is a sketch of a building theoretic alternative to the proof of Proposition 2.1: Let *H* be a σ -stable subgroup of *G* which is not *G*-cr. Consider the subcomplex Δ^H of *H*-fixed points of the building Δ , i.e., Δ^H corresponds to the set of all parabolic subgroups of *G* that contain *H*. Note that Δ^H is always convex [12, Proposition 3.1] and since *H* is not *G*-cr, Δ^H is also contractible [10, Theorem 2]. The Steinberg morphism σ of *G* affords a building automorphism of Δ , also denoted by σ . Since *H* is σ -stable, so is Δ^H . Now since Δ^H is convex and contractible, the Centre Conjecture asserts the existence of a centre of Δ^H with respect to the action of σ which corresponds to a proper parabolic subgroup of *G* which is σ -stable and contains *H*. This is precisely the conclusion of Proposition 2.1.

Acknowledgements

The authors acknowledge the financial support of the DFG-priority program SPP 1388 "Representation Theory". We are grateful to Olivier Brunat for helpful discussions on the material of this note.

References

- [1] M. Bate, B. Martin, G. Röhrle, A geometric approach to complete reducibility, Invent. Math. 161 (1) (2005) 177-218.
- [2] M. Bate, B. Martin, G. Röhrle, Complete reducibility and separable field extensions, C. R. Math. Acad. Sci. Paris, Ser. I 348 (9-10) (2010) 495-497.
- [3] A. Borel, J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965) 55-150.
- [4] C. Chevalley, Classification des groupes algébriques semi-simples, Collected Works, vol. 3, Springer-Verlag, Berlin, 2005.
- [5] M. Geck, An Introduction to Algebraic Geometry and Algebraic Groups, Oxford Graduate Texts in Mathematics, vol. 10, Oxford University Press, Oxford, 2003.
- [6] D. Gorenstein, R. Lyons, R. Solomon, The Classification of the Finite Simple Groups. Part I, Chapter A: Almost simple K-groups, Mathematical Surveys and Monographs, vol. 40 (3), American Mathematical Society, Providence, RI, 1998.
- [7] M.W. Liebeck, Subgroups of simple algebraic groups and of related finite and locally finite groups of Lie type, in: Finite and Locally Finite Groups, Istanbul, 1994, in: NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 471, Kluwer Acad. Publ., Dordrecht, 1995, pp. 71–96.
- [8] M.W. Liebeck, B.M.S. Martin, A. Shalev, On conjugacy classes of maximal subgroups of finite simple groups, and a related zeta function, Duke Math. J. 128 (3) (2005) 541–557.
- [9] M.W. Liebeck, G.M. Seitz, On the subgroup structure of exceptional groups of Lie type, Trans. Amer. Math. Soc. 350 (9) (1998) 3409-3482.
- [10] J-P. Serre, La notion de complète réductibilité dans les immeubles sphériques et les groupes réductifs, Séminaire au Collège de France, résumé dans [15, pp. 93–98], 1997.
- [11] J-P. Serre, The notion of complete reducibility in group theory, Moursund Lectures, Part II, University of Oregon, arXiv:math/0305257v1 [math.GR], 1998.
- [12] J-P. Serre, Complète réductibilité, Séminaire Bourbaki, 56ème année, 2003–2004, no. 932.
- [13] T.A. Springer, Linear Algebraic Groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston Inc., Boston, MA, 1998.
- [14] R. Steinberg, Endomorphisms of Linear Algebraic Groups, Memoirs of the American Mathematical Society, vol. 80, American Mathematical Society, Providence, RI, 1968.
- [15] J. Tits, Théorie des groupes, Résumé des Cours et Travaux, Annuaire du Collège de France 97e année (1996-1997) 89-102.