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Let X be a compact Hausdorff space and τ a topological involution on X . Let C(X, τ ) be the
real algebra of all complex-valued continuous functions on X that satisfy f (τ (x)) = f (x)
for every x ∈ X . It is shown that the absolute stable rank of C(X, τ ) equals the Bass, and
hence topological stable rank of C(X, τ ).

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit X un espace de Hausdorff et τ une involution topologique sur X . Soit C(X, τ ) l’algèbre
réelle de toutes les fonctions continues à valeurs complexes sur X telles que f (τ (x)) = f (x)
pout tout x ∈ X . Dans un papier récent, le premier auteur de cette Note et R. Rupp ont pu
calculer les rangs stables de Bass et topologique de C(X, τ ). Nous montrons ici que le rang
stable absolu de C(X, τ ) coïncide avec le rang stable de Bass, et ainsi aussi avec le rang
stable topologique de C(X, τ ). On profite de cette Note pour annoncer ainsi ce théorème
de Mortini–Rupp qui va apparaître ailleurs.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The concept of the stable rank of a ring, introduced by H. Bass in [1], has proved to be very useful in algebraic K -theory.
Several notions of stable rank have been developed meanwhile; among them the topological [6] and absolute stable rank
[3,7]. In this Note, we are interested in these notions for function spaces. Our single goal will be to determine the absolute
stable rank for the real function-algebra C(X, τ ), that is defined by C(X, τ ) = { f ∈ C(X,C): f ◦ τ = f̄ }, where X is a
compact Hausdorff space and τ is a topological involution on X .

This algebra plays a fundamental role in the theory of real function algebras (see the monograph [2] by Kulkarni and
Limaye) and actually is a more general object than C(X,C) and C(X,R). In a recent paper [5], it was shown that

bsr C(X, τ ) = tsr C(X, τ ) = max

{[
dim X

2

]
,dim E

}
+ 1,

where E denotes the set of fixed points of τ and dim X the covering dimension of X . In this Note, we are going to show
that asr C(X, τ ) = bsr C(X, τ ) = tsr C(X, τ ).

As a by-product, our Note will provide at the same time shorter proofs of the corresponding results by Vaserstein et al.
on the absolute stable ranks of C(X,C) and C(X,R) (see [7] and [8]).
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2. Notations and definitions

Let A be a commutative real or complex Banach algebra. An n-tuple (a1, . . . ,an) ∈ An is said to be invertible if there
exists (b1, . . . ,bn) ∈ An such that

∑n
j=1 a jb j = 1, where 1 denotes the unit element in A. The set of all invertible n-tuples

is denoted by Un(A). An invertible (n + 1)-tuple (a1, . . . ,an+1) is said to be reducible, if there exists (b1, . . . ,bn) ∈ An such
that (a1 + b1an+1, . . . ,an + bnan+1) ∈ Un(A).

The smallest integer n for which every element in Un+1(A) is reducible, is called the Bass stable rank of A, and is denoted
by bsr A. If no such n exists, then bsr A = ∞.

The following notion has been introduced by M. Rieffel [6]. The topological stable rank of A, denoted by tsr A, is the
smallest integer n for which Un(A) is dense in An . If no such n exists, then tsr A = ∞. Moreover, it is well known that
bsr A � tsr A.

Finally, we define the notion of absolute stable rank. We give a version that is more transparent than the original
definition given in [3] and [7]. Later on, we will observe that both versions are equivalent, though.

Let M(A) be the space of (nonzero) multiplicative C-linear, respectively R-linear, functionals with target space C. Note
that in the real-Banach algebra setting, C is considered as a 2-dimensional vector space over R.

Let f̂ : M(A) → C,m �→ m( f ) denote the Gelfand transform of f ∈ A, and let Z( f ) = {m ∈ M(A): f̂ (m) = 0}. The absolute
stable rank, asr A, of A now is the smallest integer n such that for all (a1, . . . ,an+1) ∈ An+1, there exists (b1, . . . ,bn) ∈ An

such that
∑n

j=1 |â j + b̂ jân+1| > 0 outside Z(an+1).

For the reader’s convenience, we present here a proof that the notion of absolute stable rank defined above is equivalent
to that appearing in [7] and [3].

Observation 2.1. Let A be a commutative unital (real or complex) Banach algebra. The following assertions are equivalent:

(1) ∀(a1, . . . ,an,an+1) ∈ An+1 ∃(x1, . . . , xn) ∈ An ∀h ∈ A:
∑n

j=1(a j + x jan+1)A + (1 + han+1)A = A;
(2) ∀(a1, . . . ,an,an+1) ∈ An+1 ∃(x1, . . . , xn) ∈ An:

∑n
j=1 |â j + x̂ jân+1| > 0 on M(A) \ Z(an+1).

Proof. (2) ⇒ (1) Obviously our assumption (2) implies that for all h ∈ A |1 + ĥân+1| + ∑n
j=1 |â j + x̂ jân+1| > 0 on M(A).

Hence (1) holds.
¬(2) ⇒ ¬(1) Let m ∈ M(A) \ Z(an+1) satisfy (â j + x̂ jân+1)(m) = 0 for all j = 1, . . . ,n. Choose h ∈ A so that ĥ(m) =
−ân+1(m)−1.1 Then (1 + ĥân+1)(m) = 0. Hence 1 + han+1 and all of the a j + x jan+1 belong to a common maximal ideal.
Thus ¬(1) holds. �

It is easily seen from the observation above (and well known) that bsr A � asr A.

Is there a relation between asr A and tsr A?

3. Invertible extensions

It is well known that stable rank questions are intimately related to questions of extensions of invertible tuples. Our
main tool, Lemma 3.1, will show the existence of invertible extensions F that not only remain close to any fixed Tietze
extension of a given invertible tuple on some closed subset M of X , but whose lower bound infX |F | is also controllable.

Recall that a subset M of X is τ -invariant, if τ (M) = M . For a τ -invariant set V ⊆ X , let Cb(V , τ ) be the space of all
bounded continuous functions on V that satisfy f ◦ τ = f̄ .

For f = ( f1, . . . , fm) let |f| =
√∑m

j=1 | f j |2. Finally, the set of interior points of a subset S of the topological space X is

denoted by S◦ .

Lemma 3.1. Let X be a compact Hausdorff space, 0 < ε � 1, and let M be a closed τ -invariant subset of X . Suppose that m =
bsr C(X, τ ) < ∞. Let f be an m-tuple in C(X, τ ) such that |f| > ε > 0 on M. Then f|M admits an invertible extension F ∈ Um(C(X, τ ))

such that |f − F| < 6ε and |F| > ε.

Proof. Since M is compact, we may choose ε j so that 0 < ε < ε1 < ε2 < 2ε and |f| > ε2 on M . Let Eε1 = {x ∈ X: |f(x)| � ε1}.
Hence, by the choice of ε2, M ⊆ Eε1 . We claim that there exists an extension f̂ ∈ C(X, τ )m of φ := f/|f| ∈ C(Eε1 , τ )m such

that |f̂| = 1.
Indeed, let Φ = (Φ1, . . . ,Φm) be a τ -invariant Tietze extension of φ to X and let G ∈ C(X, τ ) be chosen so that 0 � G � 1,

G ≡ 0 on Eε1 and G ≡ 1 on
⋂m

j=1 Z(Φ j). Then the (m + 1)-tuple (Φ, G) is invertible in C(X, τ ). Since bsr C(X, τ ) = m, there

1 This can be seen as follows: since w := ân+1(m) and w + 1 are linearly independent in C over R whenever w is non-real, every c ∈ C admits the
representation c = αw + β(w + 1), α,β ∈ R. Thus h = αan+1 + β(an+1 + 1) does the job.
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is an m-tuple H in C(X, τ ) such that Φ + GH is invertible in C(X, τ ). Now the m-tuple f̂ := (Φ + GH)/|Φ + GH| is the
desired extension.

Next, let K ∈ C(X, τ ) be chosen so that 0 � K � 1, K ≡ 0 on M and K ≡ 1 on |f| � ε1. Then, as we are going to show,
the m-tuple F := (|f| + ε1 K )f̂ is the desired approximation of f.

In fact, on M , F = |f|f̂ = |f|(Φ/|Φ|) = f.
Moreover, since |f̂| = 1 and K � 0, we have |F(x)| � ε1 whenever |f(x)| � ε1 and |F(x)| � ε1 K (x) = ε1 > ε whenever

|f(x)| � ε1. Thus |F| > ε.
Finally, we shall see that |F − f| < 6ε.

Indeed, on Eε1 , f̂ = f/|f|, and so, |F − f| = ∣∣|f|f̂ + ε1 K f̂ − f
∣∣ = ε1 K |f̂| � ε1 � 2ε.

On the other hand, if 0 �= |f(x)| � ε1, then |f − F| � |f|| f
|f| − f̂| + ε1 K |f̂| � ε1 · 2 + ε1 = 3ε1 < 6ε, and if |f(x)| = 0, then the

assertion is obvious, since |f̂| = 1. �
As a corollary we obtain the following extension of Lemma 3.1:

Corollary 3.2. Let Y be a compact Hausdorff space for which m := bsr C(Y , τ ) < ∞. Let g ∈ C(Y , τ ) and V = Y \ Z(g). Suppose
that M, R, S are compact τ -invariant subsets of V satisfying ∅ �= M ⊆ R ⊆ S◦ ⊆ S ⊆ V . Let b ∈ C(V , τ )m and assume that for some
ε > 0, |b| > ε on M. Then there is B ∈ C(V , τ )m such that

(1) |B − b| < 6ε;
(2) |B| � ε on R;
(3) B = b on M ∪ (V \ S).

Proof. Let α ∈ C(Y , τ ) satisfy α ≡ 0 on V \ S and α ≡ 1 on R . Let F ∈ C(S, τ )m be the function of Lemma 3.1 (where we
have put X = S and f = b). Then B = αF + (1 − α)b does the job. �
4. The main result

As in [5], let E denote the set of fixed points of the topological involution τ on X .

Theorem 4.1. bsr C(X, τ ) = tsr C(X, τ ) = asr C(X, τ ) = max{[ dim X
2 ],dim E} + 1.

Proof. Suppose that m = bsr C(X, τ ) < ∞. Let (a, g) = (a1, . . . ,am, g) be an (m + 1)-tuple in C(X, τ ). Let V = X \ Z(g). We
have to prove the existence of h j ∈ C(X, τ ) such that

∑m
j=1 |a j + gh j| > 0 on V .

To this end, let f = a/g2 and ε ∈]0,1]. Then f ∈ C(V , τ )m . If a = 0, then we let h j = 1. If f(x0) �= 0, we choose ε so that
0 < ε < |f(x0)|.

Let V = ⋃∞
n=0 Xn , where X0 = {x0, τ (x0)} and where each Xn is τ -invariant and compact. We may assume that Xn ⊆ X◦

n+1
for all n. Let F0 = f. By Corollary 3.2, applied to M = Xn−1, R = Xn and S = Xn+1, there is a sequence Fn of m-tuples in
C(V , τ ) such that |Fn − Fn−1| < 6ε; minXn |Fn| > ε and Fn = Fn−1 on Xn−1 ∪ (V \ Xn+1).

Now let F(x) = f(x) if x ∈ X0 and F(x) = Fn(x) if x ∈ Xn \ Xn−1 (n = 1,2, . . .). Then F is well defined on V and hence
F ∈ C(V , τ )m . Moreover,2 on V , |F − f| � 12ε and |F| � ε.

Hence |g2F − a| = |g2F − g2f| < 12|g|2 and |g2F| > 0 on V . Moreover, |g2F| � |a| + 12‖g‖2
X ; so g2F ∈ Cb(V , τ )m .

Also, K := g2F−a
g2 is continuous on V and bounded by 12. Hence h := gK ∈ C(X, τ )m .

Thus g2F = a + g2K = a + g(gK) = a + gh. We conclude that |a + gh| > 0 on V .
To sum up, we have shown that asr C(X, τ ) � m = bsr C(X, τ ). The reverse inequality always being true, we get the

assertion from [5]. �
5. An alternative proof

In this section we present an alternative proof, based on the Swan–Vaserstein method, of Theorem 4.1. First we derive
from Lemma 3.1 the following result on the topological stable rank of the algebra Cb(V , τ ), where V is some open subset
of X :

Corollary 5.1. Let V be an open Fσ -subset of X . Then tsr Cb(V , τ ) � tsr C(X, τ ).

2 Note that for x ∈ Xn \ Xn−1we have |Fn(x) − f(x)| � |Fn(x) − Fn−1(x)| + |Fn−1(x) − Fn−2(x)| + |Fn−2(x) − f(x)|︸ ︷︷ ︸ � 6ε + 6ε = 12ε.
=0
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Proof. Let m := tsr C(X, τ ) < ∞. Let f = ( f1, . . . , fm) be an m-tuple in Cb(V , τ ). Fix ε ∈]0,1].
If f = 0, then we let F = (ε,0, . . . ,0). If f �= 0, let x0 satisfy |f(x0)| �= 0. By passing to a smaller epsilon, if necessary, we

may assume that |f(x0)| > ε/12. As above, there is F ∈ Cb(V , τ )m so that on V , |F − f| � ε and |F| � ε/12. In particular, F is
invertible in Cb(V , τ ). Thus tsr Cb(V , τ ) � m = tsr C(X, τ ). �
Second proof of Theorem 4.1. Let m = bsr C(X, τ ) = tsr C(X, τ ) and let f = ( f1, . . . , fm, fm+1) be an (m+1)-tuple in C(X, τ ).
We have to prove the existence of h j ∈ C(X, τ ) such that

∑m
j=1 | f j + h j fm+1| > 0 outside Z( fm+1).

For this, let F = ( f1, . . . , fm, |f| fm+1). Then |F| is clearly in C(X, τ ). Let V = {x ∈ X, f(x) �= 0}. For later purpose we note
that {x ∈ X: fm+1(x) �= 0} ⊆ V .

Since f has the same zeros as F, we also have V = {x ∈ X,F(x) �= 0}. Let the (m + 1)-tuple a = (a1, . . . ,am+1) be defined
on V by

a j =
⎧⎨
⎩

f j
|F| if j ∈ {1, . . . ,m},
fm+1|f|

|F| if j = m + 1.

Then, by definition, a ∈ Cb(V , τ )m+1. We note that the factor |f| is needed later to multiply a bounded continuous function
on V to a continuous function on V ∪ Z(|f|) = X . Also, the division by |F| is needed to get an invertible (m + 1)-tuple on V .
In fact, because

∑m+1
j=1 |a j|2 = 1, the tuple a is unimodular. Thus a is an invertible (m + 1)-tuple; that is a ∈ Um+1(Cb(V , τ )).

Now, by Corollary 5.1, bsr Cb(V , τ ) � tsr Cb(V , τ ) � tsr C(X, τ ) = bsr C(X, τ ) = m. Hence there exists b = (b1, . . . ,bm) ∈
Cb(V , τ )m such that (a1 + b1am+1, . . . ,am + bmam+1) ∈ Um(Cb(V , τ )). Let h = (h1, . . . ,hm) be the m-tuple defined on X by

h j =
{ |f|b j on V ,

0 otherwise.

By definition, h is in C(X, τ )m . Hence f j + h j fm+1 ∈ C(X, τ ) and ( f j + h j fm+1)|V = (a j + b jam+1)|F|.
Note that the m-tuple G := (a1 + b1am+1, . . . ,am + bmam+1)|F| ∈ Um(C(V , τ )).

Since {x ∈ X : fm+1(x) �= 0} ⊆ V , we therefore have found h = (h1, . . . ,hm) ∈ C(X, τ )m such that |f + fm+1h| > 0 outside
Z( fm+1). Thus asr C(X, τ ) � m. �
6. The algebra C(K )sym

In this part, we are going to mention a particular case of C(X, τ ). Let K ⊆ C be a real-symmetric compact set, that is to
say that z̄ ∈ K whenever z ∈ K and τ is given by τ (z) = z̄. We obtain the algebra C(K , τ ) denoted by

C(K )sym = {
f ∈ C(K ,C): f (z) = f (z̄)

}
.

The Bass and topological stable ranks for this algebra have recently been determined (see [4]). In view of our main Theo-
rem 4.1 above, we may also deduce the absolute stable rank of C(K )sym .

Corollary 6.1. The absolute stable rank of C(K )sym is given by:

(1) asr C(K )sym = bsr C(K )sym = tsr C(K )sym = 1 if and only if the interior K̊ = ∅ and K ∩ R is totally disconnected or empty;
(2) asr C(K )sym = bsr C(K )sym = tsr C(K )sym = 2 if and only if the interior K̊ �= ∅ or K ∩ R contains an interval.

Proof. The set of fixed points of τ is K ∩ R or empty. Since dim(K ∩ R) � dim R = 1, we get

dim
(

K ∩ R
) =

{
0 if K ∩ R is totally disconnected or empty,

1 if K ∩ R contains an interval.

Moreover, dim K = 2 if and only if K̊ �= ∅. Hence it suffices to apply Theorem 4.1 to have the result. �
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