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below and diameter bounded from above. Second, we give an alternate proof of a theorem
Presented by Jean-Pierre Demailly of Cheeger and Colding. Namely, we prove that if a sequence M; of compact 3-manifolds
with Ricci curvature bounded from below Gromov-Hausdorff converges to a compact
3-manifold M, then all the M;’s are diffeomorphic to M for i large enough.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RESUME

Dans cette Note, on donne deux applications simples de résultats diis a Miles Simon
sur le flot de Ricci des variétés de dimension 3 non-effondrées. On montre d’'abord un
nouveau théoréme de finitude a difféomorphisme prés pour les variétés de dimension 3
a courbure de Ricci minorée, diameétre majoré et volume minoré. Ensuite, on donne une
nouvelle preuve d'un résultat di a Cheeger et Colding. Si une suite de variétés compactes
de dimension 3 a courbure de Ricci minorée converge au sens de Gromov-Hausdorff
vers une une variété compacte de dimension 3, alors tout les éléments de la suite sont
difféomorphes a la variété limite a partir d’'un certain rang.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

In the recent years, Ricci flow has proved to be a valuable tool in the study of the geometry of Riemannian 3-manifolds.
Starting with Hamilton’s foundational work in 1983 [8], it has lead to Perelman’s proof of Thurston’s geometrization con-
jecture in 2003 (see [10] and subsequent papers).

In this short Note, we give two applications of the Ricci flow in dimension 3 using results from [11]. In the first section,
we give the main result from [11] that we will need in the proofs. In the second section, we briefly discuss previously
known finiteness theorems and give a proof of a new finiteness result in dimension 3 using Ricci flow. In the third section,
we use these tools to give an alternate proof of a theorem of Cheeger and Colding in dimension 3.

These results follow essentially from Proposition 9.3(ii) of [11], but more details are included here for the reader’s
convenience.
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1. Results from the Miles Simon’s paper [11]

For convenience of the reader, we recall here one of the main theorems of [11] that will be used in the sequel:

Theorem 1. (See [11], Theorem 1.9.) For any k > 0 and vo > 0, there exist T > 0 and K > 0 such that, if (M, go) is a complete
3-manifold with bounded curvature satisfying:

(i) Ricci(go) = —k
(ii) Yx € M, volg,(B(x, 1)) = vo

then the solution (M, g(t)) to the Ricci flow with initial condition gg exists at least on [0, T) and satisfies, for all t in (0, T):

(a) Ricci(g(t)) > —K

(b) supy |Rm(g®)] < ¥

(c) Vx € M, volg(B(x, 1)) > 22

(d) ifo<s <t <T,eK9dg) > dg(r) > dgis) — K(VE—/5)

In [11], this result has been used to prove that a Gromov-Hausdorff limit of 3-manifolds satisfying (i) and (ii) is itself a
smooth 3-manifold. The strength of this theorem is that the estimates depend on the geometry of (M, go) in a very weak
way.

2. Afiniteness theorem in dimension 3

The first finiteness theorems in Riemannian geometry were independently obtained by Weinstein [12] and Cheeger [4]
in the late 1960’s. Cheeger’s result was that given a two sided bound on the sectional curvatures, an upper bound on the
diameter and a lower bound on the volume, only finitely many diffeomorphism types of manifold admit a Riemannian
metric satisfying these bounds. There has been a great number of successful attempts to relax the assumptions of this
theorem, for an overview we refer to [3]. One way is to try to replace bounds on the sectional curvature by bounds on the
Ricci curvature.

Theorem 1 can be used to show:

Theorem 2. Given V > 0, D > 0 and k € R there exists only finitely many closed 3-manifolds which admit Riemannian metrics such
that vol > V, diam < D and Ricci > k up to diffeomorphism.

Results in this direction have been obtained by Anderson and Cheeger [1,2] in the beginning of the 1990’s. These results
are true in any dimension but require stronger assumptions. In [1], in addition to the assumptions of Theorem 2 upper
bounds on the Ricci curvature and the L%2 norm of the curvature operator are required. Ref. [2] assumes lower bound on
injectivity radius instead of volume.

Proof. The proof goes by contradiction. Assume that we can find an infinite sequence (M;j, g;) of manifolds satisfying
Ricci(gj) >k, vol(M;j, gij) > V, diam(M;, g;) < D and such that any two of the M;’'s are not diffeomorphic. Choosing some
r> D, we have that for each i, the volume of By, (x,7) is greater than V. This shows our sequence uniformly satisfies the
hypothesis of Theorem 1.

We now apply Theorem 1 to each manifold of the sequence and get a sequence of Ricci flows (M;, gi(t))tepo,) Satisfying
estimates (a), (b), (c) and (d).

The estimate (b) in the theorem gives a two sided curvature bound which is uniform on any compact interval of (0, T).
Moreover, using a theorem of Cheeger, Gromov and Taylor (see [6], p. 199) and estimates (b) and (c), one gets, at time to =
T /2, a uniform lower bound on the injectivity radius. Thus, up to a subsequence, the sequence of Ricci flows (M;, gi(t))te(0,1)
smoothly converges to a Ricci flow (IVI, &(t))te(o,1) thanks to Hamilton’s compactness theorem [9].

Furthermore, using estimate (d), if we pick any t € (0, T), we have:

! diam(M;, gi) > diam(M;, gi (1))

In particular, for any i we get: diam(M;, gi(t)) < eXtD. This implies, as (M, gi(t)) converges smoothly to (1\71, g(t)) up to a
subsequence, diam(M, g(t)) <~e’“ D. This shows that the limit manifold M is compact and that, up to a subsequence, the
M;'’s are all diffeomorphic to M for i large enough. This is a contradiction. O

Remark 1. There is a shorter way for this proof: the estimates we get with Theorem 1 can be used to say that a manifold
satisfying the assumptions of Theorem 2 bears a metric satisfying the assumptions of Cheeger finiteness theorem (just by
flowing the metric for some fixed time ¢t € (0, T)). However, we will need the convergence of Ricci flows in the next section.
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3. ARicci flow proof of a theorem of Cheeger and Colding

In [5], Cheeger and Colding proved the following theorem:

Theorem 3. Let (M}, g;)icn be a sequence of compact n-dimensional Riemannian manifolds with Ricci curvature bounded from below

which converges to a compact Riemannian n-manifold (M", g) in the Gromov-Hausdorff sense.! Then, for i large enough, all the
manifolds M; are diffeomorphic to M.

In this section, we give a Ricci flow proof of this theorem in the case n =3.

Proof. Let (M;?’, gi) be a sequence of 3-manifolds whose Ricci curvature is bounded from below and which GH-converges to
(M3, g) a smooth Riemannian 3-manifold. Since (M;, g;)ieny GH-converges to (M, g), diam(M;, g;) tends to diam(M, g) as i
goes to infinity (by definition of GH-convergence) and vol(M;, g;) tends to vol(M, g) (this is a theorem of Colding, see [7]).
Therefore, there exist positive constants D and V such that, for any i, vol(M;, g;) > V and diam(M;, g;) < D.

We argue by contradiction. If the theorem is false, we can find a subsequence of (M;, g;) such that none of the M;’s is
diffeomorphic to M.

Then, as in the proof of Theorem 2, the Ricci flow (M;, g;j(t)) of each manifold of the sequence starting at g; exists
on (0, T) and satisfies the estimates (a), (b), (c) and (d). We then have a subsequence of (Mj, gi(t))te(o,1) Which smoothly
converges to a Ricci flow (M g(t)te(o,1) satisfying the same estimates. Furthermore, M is compact and the M;'s are diffeo-
morphic to M when i is large enough. ~

All that remains to be done is to show that M is diffeomorphic to M. This is done in the proof of Theorem 9.2 of [11]. In
a few words, one shows, using estimate (d), that the distances dz, uniformly converge as t goes to 0 to a distance [ on i
which defines the same topology as the dg’s. Then, (M, g) is obtained as the limit of the (M;, g;(t)) when first ¢ goes to 0
and then i goes to infinity and (1VI, l) is obtained as the limit of the (M;, gi(t)) when first i goes to infinity and then t goes
to 0. Using estimate (d) one can then show that (M, ) is isometric to (M, g) which finally gives that M is homeomorphic to
M (see [11], proof of Theorem 8.2). Since in dimension 3 every manifold has a unique smooth structure, M is diffeomorphic
toM. O
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1 We will write this as “GH-converges”.
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