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RESUME

Nous considérons des solutions autosimilaires de I'équation de coagulation de Smolu-
chowski avec un noyau diagonal d’homogénéité y < 1. Nous prouvons l'existence d'une
famille de solutions autosimilaires de deuxiéme type avec comportement a l'infini en
puissance x~ (), p e (y,1). A notre connaissance, ceci constitue le premier exemple
d’existence d'une telle famille pour un noyau non explicitement résoluble.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction
Smoluchowski’s coagulation equation provides a mean-field description of binary coalescence of clusters. If & denotes the
size of a cluster and f (&, t) the corresponding number density at time t then the equation is
a ; T
Sl =1 [ dnke—nmfoofe-no- e [ aKenso.o. (1)
0 0

where K (&, n) is a kernel that describes the rate of the coalescence process.
Here we consider a specific diagonal kernel of homogeneity y < 1, given by K(¢,n) = a@,ng”l’, that reduces (1) to

9 _1(ENT Lk 14y f2
Ef(éi)—z(g) f (57f>—%' VoG, (2)
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In the following we study self-similar solutions of (2). Such solutions are of the form

fE D =t*<1+<1+y>ﬁ>g(t§ﬂ) )

for some positive 8, where g satisfies, with x = £/t#, that

1\ 2( X 14y 42
~(1+0+y)B)g - Bxg'(x) = ;1(5) g <5> — X" g% (). (4)
If one looks for solutions with conserved mass, then § is uniquely determined by 8 = 8, := 1/(1—y). For further reference
we also note that we can integrate the equation in (4) to obtain

X

Bx*g(x) =/52+Vg2(5) ds+(1-y)(B —ﬁ*)/sg(S) ds. (5)
0

x/2

Here we assumed implicitly that xg(x) and x21tY g2(x) are integrable at zero and that limy_,ox2g(x) = 0. As we will see
below (cf. (9)), these properties will be satisfied by the solutions we are going to consider. Notice also that we have the
well-known power-law solution

1
g:x*””m with6 :=27"1 < 1. (6)

In [1] a mass-conserving solution of (5), that is a solution for 8 = B,, is constructed that is decaying exponentially fast
and satisfies

1
g(0) = x40 <1_9 _ x| O(Xu/(lf)/))> asx— 0, )

where © > 0 satisfies a certain transcendental equation. The constant ¢ > 0 is not determined due to an invariance of (4)
under the rescaling g(x) — a'*¥ g(ax) for any a > 0. In the case of mass-preserving solutions the constant can be fixed by
normalizing the mass of the solution. As is pointed out in [1], the solution is unique in the class of functions satisfying (7),
but uniqueness in general is not known.

In [1] the question is raised whether solutions with algebraic decay, others from the one in (6), exist in analogy to the
ones that have been found in [2] for the constant and additive kernel. More precisely, for example for the constant kernel,
it is established in [2] that there exists a family of self-similar solutions with infinite mass and the decay behavior x—(1+#)
for all p € (0, 1). Furthermore, it is shown that a solution of the coagulation equation converges to the self-similar solution
with decay behavior x~(1*°) if and only if the mass-distribution of the initial data is regularly varying with exponent 1 — p.
In this note we prove for the diagonal kernel the existence of a corresponding family of self-similar solutions with infinite
mass and asymptotic behavior x~01+#) as x — co with p € (¥, 1). Notice, that this includes solutions that are increasing
as x — oo if ¥ < —1. Our proof is simple and exploits strong monotonicity properties of a suitably rescaled version of the
equation for the self-similar solution. We presently do not know, however, how to characterize the domains of attraction
of these self-similar solutions. The analysis in [2] relies on the fact that the Laplace transform of the equation satisfies a
simple ODE, a method that is not applicable in the present situation.

Our main result is the following:

Theorem 1. Let ¥ < 1 and p be the unique positive solution of

1+ 1—2r"1-4

2 1-2v-1 ®
Then there exists for any 8 > B, a solution g of (5) such that
() = x~(1+7) <ﬁ _ x4 O(X/,L/(lfy))> 9)
as x — 0 with a positive constant c. Furthermore, x~ (1Y) g(x) is monotonically decreasing and satisfies
g(x)'vm asx — oo (10)

for some positive constant d.

As explained above, the constants ¢ and d in Theorem 1 are not determined due to the invariance of the equation under
appropriate rescaling.
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2. Proof

Our proof proceeds similarly to the one in [1] for the mass-conserving solutions. First, to scale out the singular behavior
as x — 0, we introduce h(x) = g(x)x!*? such that h solves

—ﬂxh’(x)—h(x):9h2<§> —h2(x) (1)
or, due to (5),
,Bxl_Vh(x)=/s"’hz(s)ds—i—(l—y)(ﬂ—ﬂ*)/s_yh(s)ds. (12)
x/2 0

Notice, that the power-law solution (6) corresponds to the constant solution h = 1/(1—6). It is also clear that any solution
of (11) for which limy_.oh(x) exists, that this limit must equal 1/(1—6). We are now looking for solutions that bifurcate
from this constant at x — 0.

In order to identify the next order behavior, we make the ansatz h(x) =1/(1—6) + x* + o(x*) as x — 0. Plugging this
into (12), recalling that 8, = 1/(1—y) and rearranging we find that p must indeed satisfy (8). If we denote by F(u) =
(1 —27~"1=#)/(1—6) we see that F(0) =1 > 1/2. On the other hand, F is increasing and limy, 00 F() =1/(1—-6). Hence,
there must be a unique positive solution of (8).

Next, we introduce the function j(x) via

h(x) = ﬁ + xH(—c+ j(x)), (13)
where ¢ € R is a constant. Using Eqs. (8) and (12) we obtain that j satisfies
X X
jx) = %x—“—yﬂﬂ( / sTYHmR %j(s) ds + / sV (—c + j(s))2 ds
x/2 x/2
X
+(1=y)(B—Ps) / STV i(s) ds) =:T[j]. (14)
0

In order to prove that a local solution of (14) exists, we can proceed analogously to [1]. We only indicate the main steps
here.
We define for some ¢ € (0, u) and z > 0 the space

Co@ = {f 10,21 FO =0 lIfll:= sup x~*| (0] <oc}.
x€[0,z]

It is clear that the operator T maps C¢(z) into itself. Next, we are going to show that T maps a ball in C¢(z) of a sufficiently
small radius R into itself if z is sufficiently small. This follows from

1701 < 1||j||<i;

8N\ 1201y T e

5 2z¢ (1—)/)(5—/3*))
1-y+2u 1—-y+u+e

(1=2717R78) 4l (1—-2r717n=2)

z
1-y+2u+2e

+c

that implies

T < ||J'||< QF(u+e)+1-y)B - 1)) + (117 +1).

1
B—y+u+e)
Now we know by the definition of w that 2F (i + &) <1+ B(u + €) and hence

@F(+6)+ (=1 —1) < ——— (utet1—y) = 1.

B(A—y+u+e) 1-y+u+e

Thus, there exists a constant k = k(¢) < 1 such that if | j]| <R we find | T[]l < kR + Cz*(R? + 1). For sufficiently small
z and an appropriately small R the right-hand side is bounded by R. Similarly one can show that T is a contraction, we
omit the details here. Hence, a local solution to (14) exists, and thus also to (11). Next, we choose ¢ > 0, and claim that h
is decreasing in a neighborhood of zero. To see this, notice that it follows from (14) that j'(x) exists for x > 0 and that we
have the estimate |j'(x)| < C@ + Cx*~1 for x € (0, 2). This in turn implies that
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W (x) = px = (—c + j(0) + ¥ (0) <X (—cp + Cu|j()| + Cx*).

If z is sufficiently small, we find that h’(x) < 0 for x € (0, z). We are going to show that as long as h exists and is positive
this property is conserved. Indeed, assume that there exists xo > 0 such that h’(xg) = 0. Then (11) and the fact that h is
decreasing for x < xp imply that

2
0 =h(x0)* — h(xo) — 9h2<%°> < (1-6)h*(x0) — h(x0) = h(X0) ((1-6)h(x0) — 1).

As long as h is positive, the right-hand side is strictly negative, since h(xp) < 1/(1—0) and we obtain the desired contradic-
tion. Moreover, Eq. (12) implies for 8 > B, that h is positive whenever it exists. Hence, using standard results on ordinary
differential equations, we obtain global existence of a solution h to (11) which is strictly decreasing. Since Eq. (11) has the
only stationary points 1/(1—6) and O, it also follows that h(x) — 0 as x — oo.

It remains to show that h(x) ~ dx~1/# as x — oo from which (10) follows. First, due to the invariance of Eq. (11)
under the transformation x — ax for a > 0, we can assume without loss of generality that h(1) = 1/2. Since h satisfies
BxN (x) + h(x) < h%(x) we have by simple comparison that

h(x) < 1

1
W fOrX}]. (15)

We now introduce p(x) = x'/#h(x) that solves

Bp'(x) =x" 11/ (p%x) - 022/%(;)). (16)

The estimate (15) in particular implies that p(x) <1 for all x > 1 and thus (16) implies that g|p’(x)| < 2x~1+1/A for all
x > 2. Hence |p(x) — p(x0)| < 2xal/ﬁ for any xg > 2 which implies that limy_, o, p(x) exists. In order to complete the proof
of Theorem 1 it remains to establish that this limit is strictly positive. To this end we note that (12) implies

BXTh(x) > (A=) (B — Bo) / SV h(s) ds. (17)
0

If we define @ (x) := fo s~Vh(s)ds then (17) implies that Bx®'(x) — (1 — y)(B — B+) @ (x) > 0. Integrating this last inequality
A=Y)(B=Px)
we obtain (x~ " @(x)) > 0 and thus

1
_A=p)(B—pe)
pY ] @(x)>(D(l):/s’yh(s)dx::co>0
0
for all x > 1. Thus

A=y)B—px) -
D (x) =cox P =coXx Vx

1

B
1

for x > 1 and plugging this into (17) we find h(x) > %0{3 for all x > 1, that finishes the proof.
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