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For m ∈ N, m � 1, we determine the irreducible components of the m-th jet scheme of a
toric surface S . For m big enough, we connect the number of a class of these irreducible
components to the number of exceptional divisors on the minimal resolution of S .
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r é s u m é

Pour m ∈ N, m � 1, on détermine les composantes irréductibles des m-espaces des jets
d’une surface torique S . Pour m assez grand, on relie le nombre d’une classe de ces
composantes au nombre de diviseur exceptionnel sur la résolution minimale de S .

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Nash has related the space of arcs centered in the singular locus of a variety to its resolution of singularities in 1968 (see
[14]). Since the late nineties till nowadays, these schemes and their finite dimensional approximations – jet schemes – have
generated much interest because of their appearance in motivic integration [8,2] and their use in birational geometry [4].

Despite the appearance of these jet schemes in numerous articles and in many interesting questions, few is known about
their geometry for specific classes of singularities, except for the following three classes: monomial ideals [5], determinantal
varieties [3], plane branches [11].

While arcs on toric varieties have been intensively studied [7,10,1,6], jet schemes of such varieties are still unknown.
The subject of this note is the study of the jet schemes of toric surfaces. Beside being the simplest toric singularities,
this class of singularities is interesting from two points of view: on one hand, these surfaces are examples of varieties
having rational singularities, but which are not necessary local complete intersection, therefore we cannot characterize their
rationality by [13] via their jet schemes; on the other hand, despite that these singularities are not complete intersections
and therefore we do not have a definition of non-degeneration with respect to their Newton polyhedra in the sense of
Kouchnirenko [9], they heuristically are non-degenerate because they are desingularized with one toric morphism, so from
a jet-scheme theoretical point of view, their jet schemes should not give rise vanishing components [11] (i.e. projective
systems of irreducible components whose limit in the arc space are included in the arc space of the singular locus); this
follows from Remark 2.3. For m ∈ N, m � 1, we determine the irreducible components of the m-th jet scheme Sm of a toric
surface S. We give formulas for their number and their dimensions in terms of m, and invariants of the cone defining S.

For a given m, we classify these irreducible components by an integer invariant that we call index of speciality. We prove
that for m big enough, the components with index of speciality 1, are in 1–1 correspondence with the exceptional divisors
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that appear on the minimal resolution of S . This is to compare with a result that we have obtained in [12] for rational
double point singularities.

2. Jet schemes of toric surfaces

Let K be an algebraically closed field. Let X be a K-scheme of finite type over K and let m ∈ N. The functor Fm :
K-Schemes → Sets which to an affine scheme given by a K-algebra A associates Fm(Spec A) = HomK(Spec A[t]/(tm+1), X) is
representable by a K-scheme, Xm called the m-jet scheme of X .

For m, p ∈ N, m > p, the truncation homomorphism A[t]/(tm+1) → A[t]/(t p+1) induces a canonical projection πm,p :
Xm → X p . These morphisms clearly verify πm,p ◦ πq,m = πq,p for p < m < q. This yields an inverse system whose limit
X∞ is a scheme called the arc space of X . Note that X0 = X . We denote the canonical projections Xm → X0 by πm and
X∞ → Xm by Ψm . See [4] for more about jet schemes.

Let S be a singular affine toric surface defined over K by the cone σ ⊂ NR = R
2 generated by (1,0) and (p,q), where

0 < p < q and p,q are relatively prime. Let (c2, . . . , ce−1) be the entries greater than or equal to two occurring in the
Hirzebruch–Jung continued fraction associated to q/p. Then the embedding dimension of S is e [15, Section 1.6]. We sup-
pose that e > 3, the case e = 3, i.e. the rational double point S = Ac2−1 is studied in [12]. Analyzing the convex hull
of σ∨ ∩ M , where M is the dual lattice of N , Riemenschneider has exhibited the generators of the ideal defining S in
A

e = Spec K[x1, . . . , xe] in [16]; these are:

Eij = xi x j − xi+1x
ci+1−2
i+1 x

ci+2−2
i+2 · · · x

c j−2−2
j−2 x

c j−1−2
j−1 x j−1, where 1 � i < j − 1 � e − 1.

Let f ∈ K[x1, . . . , xe]; for m, p ∈ N such that p � m, we set:

Contp( f )m
(
resp. Cont>p( f )m

) := {
γ ∈ Sm

∣∣ ordγ ( f ) = p (resp. > p)
}
,

Contp( f ) = {
γ ∈ S∞

∣∣ ordγ ( f ) = p
}
,

where ordγ ( f ) is the t-order of f ◦ γ .

For a,b ∈ N, b 	= 0, we denote by 
 a
b � the ceiling of a

b . For i = 2, . . . , e − 1, s ∈ {1, . . . , 
m
2 �} (i.e. m � 2s − 1 � 1) and

l ∈ {s, . . . ,ms
i }, where ms

i := min{(ci − 1)s, (m + 1) − s}, we set

Ds,l
i,m := Conts(xi)m ∩ Contl(xi+1)m and C s,l

i,m := Ds,l
i,m.

If R is a ring, I ⊆ R an ideal and f ∈ R , we denote by V (I) the subvariety of Spec R defined by I and by D( f ) the open
set D( f ) := Spec R f .

Lemma 2.1. For i = 2, . . . , e − 1, s � 1, the ideal defining C s,s
i,2s−1 in A

e
2s−1 is I s,s

i,2s−1 = (x(b)
j ,1 � j � e,0 � b < s). Note that C s,s

i,2s−1

does not depend on i. For j = 1, e, we set C s,s
j,2s−1 := C s,s

i,2s−1, i = 2, . . . , e − 1.

Proof. Let’s prove that Ds,s
i,2s−1 = V (I s,s

i,2s−1) ∩ D(x(s)
i x(s)

i+1). Let γ ∈ A
e
2s−1 such that ordγ xi = ordγ xi+1 = s. So, we have

ordγ xci
i = ci s > 2s − 1 because ci � 2. If moreover γ lies in S2s−1, then it satisfies Ei−1,i+1 mod t2s, which is equivalent to

ordγ xi−1 � s, because xci
i ◦γ ≡ 0 mod t2s and ordγ xi+1 = s. The same argument, using Ei−2,i, Ei,i+2 and so on by induction,

using the other E ji ’s and Eij ’s, gives that ordγ x j � s. We deduce

Ds,s
i,2s−1 ⊂ V

(
I s,s
i,2s−1

) ∩ D
(
x(s)

i x(s)
i+1

)
.

The opposite inclusion comes from the fact that a jet in V (I s,s
i,2s−1) ∩ D(x(s)

i x(s)
i+1) ⊂ A

e
2s−1 satisfies all the equations of S

modulo t2s. Since V (I s,s
i,2s−1) ⊂ A

e
2s−1 is irreducible, the lemma follows. �

Proposition 2.2. For i = 2, . . . , e − 1, m ∈ N, s ∈ {1, . . . , 
m
2 �} and l ∈ {s, . . . ,ms

i }, C s,l
i,m is irreducible, and its codimension in A

e
m is

equal to se + (m − (2s − 1))(e − 2).

Proof. A similar argument to the one used in Lemma 2.1 shows that πm,2s−1(Ds,l
i,m) ⊂ C s,s

i,2s−1. Using syzigies among E jh,1 �
j < h − 1 � e − 1, we prove that

Ds,l
i,m = {

γ ∈ A
e
m;ordγ xi = s,ordγ xi+1 = l,ordγ E j,h � m + 1 for ( j,h) = (i − 1, i + 1), j = i, h = i

}
.

This explicit description of Ds,l
i,m shows that its coordinate ring is isomorphic to a polynomial ring over Spec K[x(s)

i ,

x(l)
i+1]x(s)

i x(l)
i+1

, therefore its closure C s,l
i,m is irreducible. It also allows to compute its codimension. �
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Remark 2.3. For i = 2, . . . , e − 1 and m, s ∈ N such that m � 2s − 1 and l ∈ {s, . . . ,ms
i }, we have Ψ −1

m (Ds,l
i,m) 	= ∅.

Proof. Actually we prove that if s � l � (ci − 1)s, then Conts(xi) ∩ Contl(xi+1) 	= ∅. Let ui, i = 1, . . . , e, be the system of
minimal generators of σ∨ ∩ M, so we have that xi = xui . First note that since (ui, ui+1) is a Z-basis of M, there exists a
unique v ∈ N such that 〈ui, v〉 = s and 〈ui+1, v〉 = l. It is enough to prove that v ∈ σ . For e = 4, this is easy to check, and
the lemma follows by induction on e. �
Proposition 2.4. Let m, s ∈ N such that m � 2s − 1.

1. For i = 1, e, we have that π−1
m,2s−1(C s,s

i,2s−1 ∩ D(x(s)
i )) is irreducible.

2. For i = 2, . . . , e − 1, m � 2s − 1, the irreducible components of π−1
m,2s−1(C s,s

i,2s−1 ∩ D(x(s)
i )) are the C s,l

i,m, l ∈ {s, . . . ,ms
i }.

Proof. We sketch the proof of (2), the proof of (1) is similar. We have already seen in the proof of Proposition 2.2 that
Ds,l

i,m ⊂ π−1
m,2s−1(C s,s

i,2s−1 ∩ D(x(s)
i )) for l ∈ {s, . . . ,ms

i }. Using syzigies among E jh,1 � j < h − 1 � e − 1, we prove that

π−1
m,2s−1

(
C s,s

i,2s−1 ∩ D
(
x(s)

i

))

= {
γ ∈ A

e
m;ordγ x j � s for j = 1, . . . , e,ordγ xi = s,ordγ E j,h � m + 1 for ( j,h) = (i − 1, i + 1), j = i, h = i

}
.

This implies that the coordinate ring of the above set is isomorphic to a polynomial ring over the coordinate ring
of the locally closed subset of the m-jets of the Aci−1 singularity defined by Ei−1,i+1, consisting of those γ such that
ordγ xi = s,ordγ xi−1 and ordγ xi+1 � s. The claim follows from the description of this latter. �
Lemma 2.5. For i = 2, . . . , e − 2, C s,s

i,m = C
s,ms

i+1
i+1,m .

Proof. This follows from the fact that an m-jet should verify (Ei,i+2) modulo m + 1, and from the explicit description in
Proposition 2.4. �

Let S0
m := π−1

m (O ), where O is the singular point of S. Note that π−1
m (S − {0}) is an irreducible component of Sm of

codimension (m + 1)(e − 2) in A
e
m; We will see that the irreducible components of S0

m have codimension less than or equal
to (m + 1)(e − 2), therefore they are irreducible components of Sm.

Proposition 2.6. S0
m = ⋃

i∈{2,...,e−1}, s∈{1,...,
 m
2 �}, l∈{s,...,ms

i } C s,l
i,m.

Proof. We first look at the case m = 2n + 1, n � 0. We claim that

S0
2n+1 =

⋃

i∈{1,...,e}, s∈{1,...,n}
π−1

2n+1,2s−1

(
C s,s

i,2s−1 ∩ D
(
x(s)

i

)) ∪ Cn+1,n+1
i,2n+1 . (�)

The proof of the claim is by induction on n. By Lemma 2.1, we have that S0
1 = C1,1

i,1 for any i = 1, . . . , e, hence the case
n = 0. Using the inductive hypothesis for n−1, and the fact that for s ∈ {1, . . . ,n−1} we have that π2n−1,2s−1 ◦π2n+1,2n−1 =
π2n+1,2s−1, we obtain:

S0
2n+1 = π−1

2n+1,2n−1

(
S0

2n−1

) =
⋃

i∈{1,...,e}, s∈{1,...,n−1}
π−1

2n+1,2s−1

(
C s,s

i,2s−1 ∩ D
(
x(s)

i

)) ∪ π−1
2n+1,2n−1

(
Cn,n

i,2n−1

)
.

The claim follows from the stratification Cn,n
i,2n−1 = ⋃

j=1,...,e(Cn,n
i,2n−1 ∩ D(x(n)

j )) ∪ (Cn,n
i,2n−1 ∩ V (x(n)

1 , . . . , x(n)
e )), and from the

fact that by Lemma 2.1 π−1
2n+1,2n−1(Cn,n

i,2n−1 ∩ V (x(n)
1 , . . . , x(n)

e )) = Cn+1,n+1
i,2n+1 .

We then conclude the proposition for m = 2n + 1 in two steps: First, by using Proposition 2.4(2). Second, by de-
ducing from the fact that the vector (s, s) ∈ σ , hence Conts(x1) ∩ Conts(x2) 	= ∅, that π−1

2n+1,2s−1(C s,s
i,2s−1 ∩ D(x(s)

2 )) ∩
π−1

2n+1,2s−1(C s,s
i,2s−1 ∩ D(x(s)

1 )) 	= ∅. Since by 2.4(1) this latter is irreducible, its generic point coincides with the generic point

of one of the irreducible components of π−1
2n+1,2s−1(C s,s

i,2s−1 ∩ D(x(s)
1 )).

Case m = 2(n + 1), n � 0: By (�) we just need to prove that

π−1
2(n+1),2n+1

(
Cn+1,n+1

i,2n+1

) =
⋃

{i=2,...,e−1; l=n+1,...,mn+1
i }

Cn+1,l
i,2(n+1)

.

The proof is by induction on the embedding dimension. We show below the case e = 4:
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If c2 = c3 = 2, then mn+1
i = n + 1 and by Lemma 2.1, π−1

2(n+1),2(n+1)−1(Cn+1,n+1
i,2(n+1)−1) is defined in A

e
2(n+1) by In+1,n+1

i,2(n+1)−1
whose generators are coordinates and the ideal

(
x(n+1)

1 x(n+1)
3 − x(n+1)2

2 , x(n+1)
1 x(n+1)

4 − x(n+1)
2 x(n+1)

3 , x(n+1)
2 x(n+1)

4 − x(n+1)2

3

)
.

Therefore π−1
2(n+1),2(n+1)−1(Cn+1,n+1

i,2(n+1)−1) is irreducible (the above ideal is isomorphic to the ideal which defines the surface S)

and is equal to Cn+1,n+1
j,2(n+1)

, j = 2,3, since Dn+1,n+1
2,2(n+1) = Dn+1,n+1

3,2(n+1) is dense in both. The subcases (c2 = 2 and c3 	= 2) and (c2 	= 2
and c3 	= 2) follow also easily. �
Theorem 2.7. Let m ∈ N, m � 1. Modulo the identifications C s,s

i,m = C
s,ms

i+1
i+1,m , the irreducible components of S0

m := π−1
m (0) are the

C s,l
i,m, i = 2, . . . , e − 1, s ∈ {1, . . . , 
m

2 �} and l ∈ {s, . . . ,ms
i }.

Proof. By Proposition 2.6, S(0)
m is covered by the C s,l

i,m. But apart from the identifications above, C s,l
i,m 	⊂ C s,l′

i′,m, because by
Proposition 2.4, there exist hyperplane coordinates that contain the one but not the other, and by Proposition 2.2 they
have the same dimension. On the other hand, C s,l

i,m 	⊂ C s′,l′
i′,m, if s < s′, because by Proposition 2.4 the C s,l

i,m has non-empty

intersection with D(x(s)
i ), but C s′,l′

i′,m ⊂ V (x(s)
i ). Finally, C s′,l′

i′,m 	⊂ C s,l
i,m, because by Proposition 2.2 the codimension of the first

one is less than or equal to the codimension of the second one, and the theorem follows. �
Remark 2.8. Given Theorem 2.7, Remark 2.3 means that there are no vanishing components.

Definition 2.9. Let m ∈ N, m � 1, and let C be an irreducible component of S0
m. By Theorem 2.7, there exist s ∈ {1, . . . , 
m

2 �},
l ∈ {s, . . . ,ms

i } and i ∈ {2, . . . , e − 1} such that C = C s,l
i,m. We say that C has index of speciality s. Note that s = ordγ (M) :=

min f ∈M{ordγ ( f )} where M is the maximal ideal of the local ring O S,0 and γ the generic point of C .

For a,b ∈ N, b 	= 0, we denote by [ a
b ] the integral part of a

b . For c,m ∈ N, let m = qcc + r be the Euclidean division of m
by c. We set Ns

c(m) := (sc − (2s − 1)), for s = 1, . . . ,qc ; Ns
c(m) := m − (2s − 2), for s = qc + 1, . . . , 
m

2 �.
For m ∈ N, m � 1, we call N(m) the number of irreducible components of S0

m. Then counting the irreducible components
in Theorem 2.7 we find

Corollary 2.10. If all the ci are equal to 2, then N(m) = 
m
2 �. Otherwise let ci1 , . . . , cih be the elements in {c2, . . . , ce−2} different

from 2, then we have N(m) = ∑
 m
2 �

s=1 (Ns
ci1

(m) + (Ns
ci2

(m) − 1) + · · · + (Ns
cih

(m) − 1)).

Corollary 2.11. For m � max{ci, i = 2, . . . , e − 1}, the number of irreducible components of S0
m, with index of speciality s = 1, is

equal to the number of exceptional divisors that appear on the minimal resolution of S.

Proof. This comes from the comparison of Corollary 2.10 with Corollary 1.23 in [15, p. 29]. �
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