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RESUME

Cette Note a pour objet I'existence et les propriétés des solutions de type front progressif
pour un systéme de réaction-diffusion non linéaire avec pertes a I'intérieur du domaine.
Nous montrons en particulier I'existence d'un continuum de vitesses admissibles pour les
fronts. Enfin, en considérant des pertes localisées prés du bord, ces résultats sont comparés
avec ceux déja connus pour des pertes a la frontiére du domaine.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version francaise abrégée

L'objectif de cette Note est I'étude des solutions de type front progressif d'un systéme de réaction-diffusion a deux
équations de type proie-prédateur, avec la présence d’'un terme de pertes. On considére le systéme suivant, posé dans un
domaine cylindrique £2 =Ry x wy C RN, oit w est borné a bord régulier :

{ Ut +B(y)Ux=Au+ f(y,U)V —h(y, U),
Ve+ B Vx=dTAV — f(y,U)V,

avec des conditions de Neumann au bord. On suppose que le flot 8 est de classe C%% (@) et vérifie fwﬂ(y) dy =0. Les
fonctions f et h sont C1%(@ x [0, +00); R), et du type KPP dans le sens suivant :
af af

f(-,0)=0<f(~,U)<ﬁ(~,0)U pour U >0, ﬁ>0’ f(, +00) =+o0,

(1)

ah
h(.0)=0< 2-(.0U <h(.U)<KU oK >0,
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/ oh (y,0)d 0
—(y, > 0.
35U y y
w
Le terme de pertes est ici la fonction h, qui agit a I'intérieur du domaine.

On s'intéresse d’abord dans cette Note aux fronts progressifs solutions non triviales de ce systéme, c'est-a-dire les so-
lutions de la forme U(t,x,y) =Ux —ct,y) et V(t,x,y) =V (x—ct,y) avec U >0,0<V <1 et les conditions a I'infini
suivantes :

{0(+oo,~> =0, V(4o0,)=1,
Ux(—00,) = Vx(—00,-) =0.
Pour simplifier nos notations, on se place dans le repére avancant a vitesse ¢ et on enléve les tildes.

On montre alors qu'il existe un continuum de vitesses admissibles. Plus précisément, si I'on introduit wp ¢ la valeur
propre principale de (4), il existe une vitesse c* telle qu'on a le théoréme suivant :

(2)

Théoréme 0.1. (a) Supposons que iy 5(0) < 0. Alors pour toute vitesse ¢ > max(0, c*), il existe un front progressif solution non
triviale de (1)-(2) avec les conditions de Neumann sur 952.

(b) Supposons que sup; cg ((p, f (1) — 1%) < 0. Alors c* > 0 et il existe un front progressif avec vitesse ¢ = c* solution non triviale
de (1)-(2) avec les conditions de Neumann sur 952.

(c) Réciproquement, soit (U, V) front progressif avec vitesse ¢ solution de (1)-(2) avec les conditions de Neumann au bord, et tel
que0 < Uet0 <V <1.Alors U est borné, U(—00,) =0, V(—00,:) =V € (0, 1), p, ;(0) <0,c>0etc>c

Dans [2,6], les auteurs ont étudié un systéme semblable (5)-(6), ou les pertes ont lieu non pas a I'intérieur du domaine
mais au bord, avec une condition de Robin % +qU =0 sur 352 ol q constante positive. Il existe aussi pour ce systéme un
continuum de vitesses admissibles de la forme (y", +00).

Théoréme 0.2. Soit (hy)ren une suite de fonctions linéaires en U et telles que :

oh _
de \ 0 tel que a—J(-,O) — 0 uniformément sur a)\(aa) + B(O, ek)),

a—hk(-,O)

&
k PY3;

=0(1),
L% ()

1

8hk . P N
g(o):= E‘kW (0 — &xsn(o), 0) ds — q uniformément pour o € dw et ot n normale de dw.

0

Alors la suite (cy)x des vitesses minimales pour le systéme (1) avec h = hy converge vers yq* la vitesse minimale pour le systéme (5)
avec conditions au bord (6). De plus, en dimension d = 2, il existe une suite de fronts progressifs solutions de (1)-(3) et (2) avec h = hy,
et ¢ > max(0, yq*), qui converge faiblement dans H}OC(Q) vers un front progressif non trivial solution de (5)-(6) et (2).

1. Introduction

Reaction-diffusion equations and related spreading phenomena have been extensively studied in the past decades, due to
the numerous applications in various fields of natural sciences, ranging from chemical and biological contexts to combustion
and many-particle systems (see [1,3,7,8] for reviews of this mathematical area). However, much less is known for reaction-
diffusion systems, where several unknowns are involved. Indeed, previous studies for systems have been mainly limited to
competition or cooperation-diffusion systems, for which the comparison principle holds. Very little is known rigorously in
the case of combustion or prey-predator systems in heterogeneous media or in higher dimensions.

We consider here such a problem in a cylindrical domain £2 =Ry x wy C RN, where w is smooth and bounded:

{ U +BWMUx=Au+ f(y,U)V —h(y,U),
Ve+ B Vx=d'AV — f(y,U)V,
with Neumann boundary conditions

ou av
Pl 0 on 852, where n denotes the outward unit normal on dw. (3)

We assume that the flow B does not depend on x, is of class C%% (@) and is such that fwﬁ(y) dy = 0. The functions f
and h are assumed to be in C1*(@ x [0, +00); R). Moreover, the reaction term f satisfies:
of of _

f(~,0)=0<f(-,U)<ﬁ(-,0)U forU >0, E/O, f(, +00)=+o0,
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and the loss term h, which can take place in the whole domain, is such that:

oh oh
h(~,0)=0<ﬁ(-,O)Ugh(~,U)<KU where K > 0, fﬁ(y,O)dy>O.
w

By analogy with the single equation case, those are KPP type hypotheses which allow to use comparisons with the linearized
problem. The positivity of fw %(y, 0)dy means that the loss is nontrivial.

We take interest in this Note in the nontrivial traveling wave solutions of system (1), that is, solutions of the form
U(t,x,y)=Ux —ct,y) and V(t,x,y)=V(x—ct,y) with U >0, 0 <V < 1, which satisfy (1) with Neumann boundary
conditions and:

{ff(+oo,-> =0, V(4o0,)=1,
Ux(—00,-) = Vx(—00,") =0.
To simplify our notations, we will place ourselves in the moving frame with speed c and drop the tildes. System (1) then
becomes a time-independent elliptic problem.

As announced, we will first give some necessary and sufficient conditions on the existence of such solutions. In particular,
we will show the existence of a minimal admissible speed. This result is directly related to the linearized problem, as we

explain below. Lastly, we show how this model with losses distributed inside the domain can be related to the model with
losses concentrated on the boundary.

2. Study of the system with losses distributed inside the domain
Here, we give some results about the existence of traveling wave solutions of (1)-(3) and (2).
2.1. Preliminary linear analysis

From the KPP hypotheses, we expect the behavior of the system to be determined by the linearized system with U =0
and V = 1. Thus, we introduce the following principal eigenvalue problem, depending on a parameter 1 € R:

oh d
—Aydp —Au(y)dn + (W(y, 0) — %(y, 0)>¢/\ = ph, (M) Inw,
4
% =0 ondw, @)
on
¢ >0 in @.

One can check that the function pp ¢ is C 1 and concave with respect to A € R. By looking at solutions of the form U (x, y) =
¢,.(y)e™** of the linearized system, we obtain the condition Uh,f(A) = A2 —cx. When Wh, £(0) > 0, by concavity with respect
to A, this condition admits a negative solution and U = 0 would then be stable for the linearized problem. Here, we want
U to be decreasing toward 0 on +o0, see (2). Thus, we will assume that 5 f(0) <0, and we can then define

¢* = min{c e R/3x > 0 such that up f(A) =A% — cA}.
We will see that c* is indeed the minimal speed of the traveling wave solutions.
2.2. Existence of traveling wave solutions

Our first main result is the existence of traveling wave solutions for any speed ¢ > max(0, c*). More precisely, we have
the following theorem:

Theorem 2.1. (a) Assume that pp, ¢ (0) < 0. For any ¢ > max (0, c*), there exists a nontrivial traveling wave solution (U, V) of (1)-(2)
with Neumann boundary conditions on 952.

(b) Assume that sup; g (iLh, f (A) — 2%) < 0. Then c* > 0 and there exists a nontrivial traveling wave solution (U, V) of (1)-(2)
with Neumann boundary conditions on 952 and minimal speed ¢ = c*.

In the case ¢ > c*, the proof given in [4] relies on the construction of sub- and super-solutions:
- Y =1 and V is of the form max(0, 1 — ¥ (y)e~%*) with ¥ > 0 and § a small positive constant;
- U, y)=¢:(y)e ™ and U(x, y) = max(0, ¢ (y)e ™ — y sy (y)e~*+1X) where A is the (positive) smallest real num-
ber such that wp s(A) = A% —ca, and > 0 is small and y > 0 is large.

We then use a fixed point theorem on truncated cylinders, and conclude by passing to the limit to obtain global solutions.
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The case ¢ = c* is more complicated, as we can’t find a subsolution for U by proceeding with the above method. Thus,
we consider a sequence (Up, V) of traveling wave solutions with speed ¢, — c*. The main step is to locate the interface,
that is to find a sequence (X,, ¥») such that inf, |VV,(X,, yn)| > 0. This can be done using a lemma on the behavior of V
behind the front, which states that V(—o0,-) <a* <1 for some a* independent of the speed c. It can then be shown, using
standard estimates, that (U, (X, +-,-), Vn (X, + -,-)) converges to a nontrivial traveling wave solution with minimal speed c*.

This result is a generalization of what is already known in the KPP single equation case. It shows that under an instability
assumption on the linearized problem with U =0 and V =1, traveling waves exist for a continuum of admissible speeds.

Conversely to the previous theorem, we also show that the condition ¢ > c¢* is necessary, as well as the instability
assumption iy, (0) < 0 on the linearized problem.

Theorem 2.2. Let (U, V) be a traveling wave solution with speed c of (1)-(2), and such that 0 < U and 0 < V < 1. Then U is bounded,
U(=00,-) =0, V(—=00,") =V €(0,1), ity 5(0) <0,c>0and c > c*.

The proof of this theorem relies on the integration of the equations verified by U and V, which gives us some estimates,
and the existence of the limits U(—o0,-) and V(—o0,-). We can then use the behavior of U near +o00, where the problem
is almost linear, to get the conditions on wp f(0) and the speed c.

3. Consistency with the model with losses on the boundary

We introduce the following system, studied in [2,6]:

[Ut +B(y)Ux= AU+ f(y,U)V,
Ve+ B Vx=dTAV — f(y,U)V,

with boundary conditions

(5)

au

— +qU =0,

on

A%

o
where q is a positive constant. Here, the loss does not take place inside the domain but along the boundary, hence the Robin
boundary condition on U. The study of this problem presents similar results to those described in Section 2. In particular,
there is also a continuum of admissible speeds of the form (y;", +00) for the existence of traveling wave solutions. Since
both models are physically relevant (in population dynamics, the saturation can induce a larger death rate inside the domain,
or make the individuals leave it), it is natural to consider losses distributed inside the domain and converging toward a Dirac
mass on the boundary, and then look at the convergence of the related problems and solutions.

We consider a sequence (hg)gen such that:

on a2, (6)

)

oh _
Jei \\ 0 such that B—J(~,O) — 0 uniformly in w\ (3w + B(0, &)),

ohy

Ek| 57 (-0 =0(D),

1% (w) (7)

oh
glo):= / ska—uk(a —&xsn(o), O) ds — q uniformly in o € dw.

0

Let us note ¢ and yq* the minimal speeds related respectively to systems (1)-(3)-(2) with h = h; and (5)-(6)-(2). We
assume that they are well defined, which is the case for ¢ as long as up,, (0) <0, as seen above. Similarly, it has been
shown in [2,6] that yq* is well defined under the same assumption on the principal eigenvalue of the linearized problem
with losses on the boundary, and that then there exist traveling front solutions for any speed ¢ > )/q*.

Theorem 3.1. Under the above assumptions, we have that ¢ — y; as k — +oo.

To ensure the accordance between the two models, we want to show the convergence of the traveling wave solutions of
(1)-(3) and (2) with h = h;, and some speed ¢ > y to a traveling wave solution of (5)-(6) and (2) with the same speed.
The main difficulty is the lack of bounds on hg, and thus the lack of estimates and of a Harnack inequality. Here, we will
only consider particular solutions which satisfy some exponential bounds from below and above, in order to overcome this
difficulty.
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Theorem 3.2. Let (hy)ren be a sequence of functions linear with respect to U and such that (7) is satisfied. Let also (U, Vi)ren be
a sequence of nontrivial traveling wave solutions with speed ¢ >y of problem (1)-(3) and (2) with h = hy, and let (Ax)ken be a
sequence of positive real numbers such that for any k € N, we have:

Mg = Chie = iy, ()

We assume that there exist 0 < A1 < A, and Cy, C, C3 > 0 such that for all k € N and (x, y) € 2:
Ur(x, y) < Cre ¥ max(0, Coe~ 41" — C3e™42%) < Up(x, y). (8)

Then up to extraction of a subsequence, (Uy, V) converges weakly in Hfoc(ﬁ) to a nontrivial solution (U, V) of problem (5)-(6)
and (2).

The bounds (8) are proved to hold in dimension d = 2. Indeed, we know from the proof of Theorem 2.1 that those
bounds are satisfied for each k and ¢ > c. To make them independent of k € N, we have to use strong estimates on the
principal eigenfunctions of (4) which hold only in dimension 2 (d = 2), where H'(w)-estimates imply C%1/2(w)-estimates.
The discussion above leads to the following corollary of Theorem 3.2:

Corollary 3.3. Let (hy)ken be a sequence of functions linear with respect to U and such that (7) is satisfied. In dimension d = 2, up
to extraction of some subsequence, there exists a sequence of traveling wave solutions of problem (1)-(3) and (2) with h = hy, and

¢ > max(0, yq*), that converges weakly in H,loc(ﬁ) to a nontrivial traveling wave solution (U, V) of problem (5)-(6) and (2).

The dedicated proofs are given in [5].
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