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We construct a 3-dimensional billiard realizing all links as collections of isotopy classes
of periodic orbits. For every branched surface supporting a semi-flow, we construct a 3d-
billiard whose collections of periodic orbits contain those of the branched surface. R. Ghrist
constructed a knot-holder containing any link as collection of periodic orbits. Applying our
construction to his example provides the desired billiard.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On construit un billard tridimensionnel réalisant tout entrelacs fini comme collection
d’orbites périodiques. Plus généralement, étant donné un patron, c’est-à-dire une surface
branchée munie d’un semi-flot, on construit un billard dont la collection des orbites
périodiques contient celle du patron. R. Ghrist a construit un tel patron contenant tous les
entrelacs. On obtient le billard souhaité en appliquant notre construction à son exemple.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

For every compact domain of R
3 with a smooth boundary, one can play billiard inside it, with the rule that rays reflect

perfectly on the boundary, see [6]. If the boundary has corners, the reflection is not defined, and we only consider orbits
avoiding them. Thus a periodic orbit with no self-intersection point yields a knot in R

3 and one can wonder about the
relation between the shape of the billiard and the knots arising in this way. In a cube, the latter correspond to the so-called
Lissajous knots, see [2]. In a cylinder the situation is more intricate, see [3]. It is asked in [4] and [5] whether there exists a
billiard containing all knots as periodic orbits. In this Note, we provide a positive answer to this question.

Definition 1. A template (see Figs. 1, 2) is a smooth compact surface S with boundary embedded in R
3 and equipped with

a non-vanishing vector field V so that:

(i) V is tangent to the surface S and to its boundary,
(ii) there exist finitely many branching segments — called convergence segments — transverse to V , where three pages

P+, P− and P o of the surface meet, with V leaving P+ and P− and entering P o ,
(iii) there exist finitely many branching points — called separation points — on the boundary of S whose neighborhood is

diffeomorphic to an open disc cut along the bottom vertical radius and equipped with the top–bottom vector field.
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Fig. 1. How does a template look like. A generic point, a convergence
segment and a separation point.

Fig. 1. Ce à quoi ressemble un patron. Un point générique, un segment
de convergence et un point de séparation.

Fig. 2. A generalized Lorenz’ template, and the Ghrist’s template [1].

Fig. 2. Un patron de Lorenz généralisé et le patron de Ghrist [1].

First suppose we are given a template T0 that can be immersed into the plane (for example Ghrist’s template works,
but not the generalized Lorenz’).1 Distort it into T1 in such a way that the projection of T1 on the horizontal plane is
obtained by gluing ribbons with slopes (±1,0) or (0,±1) for generic points, isosceles-rectangular triangles for changes of
direction, ribbons with slope (0,−1) for convergence segments, and parabolic church shapes. These patterns are depicted in
Figs. 3 and 4. Note that they fit well into the integer lattice Z

2. Now we associate a billiard B1 to T1 by lifting it in R
3 so

that ribbons are 1 unit thick along the vertical direction and match with each other. Convergence segments and separation
points deserve a special treatment depicted in Figs. 5 and 6. There could be level gaps, but these can be settled using
vertical double bends, see Fig. 7.

Fig. 3. Patterns for the template T1.

Fig. 3. Pièces du patron T1.

Fig. 4. Ghrist’s template distorted into a T1-like template.

Fig. 4. Le patron de Ghrist déformé pour être de type T1.

Our claim is the following:

Theorem 2. For every template T0 embedded in R
3 , every finite collection of periodic orbits of T0 is isotopic to a finite collection of

periodic orbits of the billiard B1 constructed above.

Applying this to Ghrist’s template [1] yields

Corollary 3. There exists a domain in R
3 with a piecewise smooth boundary (see Fig. 9) so that any link appears as a family of periodic

billiard trajectories.

Proof. We only prove the theorem for knots, the case of links being similar.
Let γ0 be a periodic orbit on T0. Since the templates T0 and T1 are isotopic, there exists a periodic orbit γ1 of T1 isotopic

to γ0. Let p be an arbitrary point on γ1. One associates an infinite periodic word wN
γ1,p on the alphabet {0,1} so that when

one follows γ1, the sequence of left/right-choices at separation points is described by the letters of wN
γ1,p .

Let q be a point inside B1, and suppose that it projects to T1 on a point where the flow is parallel to the y-direction. Call
(xq, yq) the horizontal coordinates of q and zq the vertical one (along which the projection is performed). Playing billiard
in B1 along the y-direction does not change (xq, zq), unless one crosses corners, churches or convergence boxes. In the first

1 For orientable templates, the so-called bell trick can do the job.
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Fig. 5. How to realize a separation point using billiards: on the left side a horizontal
cut. The left two curves are confocal parabolae, the exterior one being homothetic to the
interior one by a factor 2. In this way, vertical entering rays go out vertically and their
mutual distances are doubled. The same thing holds on the right of the separation point.

Fig. 5. Réalisation d’un point de séparation par un billard. Les deux courbes de gauche sont
des paraboles confocales, l’externe étant homothétique de l’interne par un facteur 2. Ainsi
les trajectoires arrivant verticalement par le haut sortent verticalement et leurs distances
mutuelles sont doublées. La même chose se produit à droite du segment de séparation.

Fig. 6. How to realize a convergence
segment by billiards: a vertical cut.
The shape is the same as for separa-
tion points, but the flow is reversed,
and the shape turned 90◦ along the
y-direction.

Fig. 6. Réalisation d’un segment de
convergence. On prend la même pièce
que pour les points de séparation, en
la tournant verticalement. Le flot est
également renversé.

Fig. 7. A horizontal double bend. At each corner some cross-
ings which were not on the template T0 may appear. Neverthe-
less, since corners come in pairs, these extra-crossings disappear
with a Reidemeister-II-move. Level gaps are solved with this
pattern turned vertically.

Fig. 7. Une chicane horizontale. À chaque coin apparaissent des
croisements qui n’existaient pas sur le patron T0. Néanmoins,
comme les coins viennent toujours par paires, ces croisements
supplémentaires aussi, et un mouvement de Reidemeister les
supprime.

Fig. 8. How to realize a half-twist. Note on the left picture
that the projections of any two strands cross exactly once,
and that horizontal strands go above vertical ones. Since
a braid in which any two strands cross exactly once and
positively is half-turn �n , this billiard realizes a half-twist.

Fig. 8. Réalisation d’un demi-tour. Comme indiqué sur la
partie gauche, les projections horizontales de deux trajec-
toires se coupent exactement une fois, avec le brin O–E
par au-dessus du brin N–S. Or une tresse dont deux brins
quelconques se coupent exactement une fois et positive-
ment est isotope au demi-tour �n .

case, the restrictions we imposed on possible shapes force a second corner to follow the first one, and the x, z-coordinates
mod 1 are not affected by two consecutive changes of direction. When crossing a church, the x-coordinate is doubled mod 1.
Similarly, crossing a convergence box backwards doubles the z-coordinate. In other words, if we play billiard along the y-
direction, the future is encoded in the x-coordinate, while the past is encoded in the z-coordinate. In particular, if q lies on
a periodic orbit in the y-direction, the dyadic expansions of xq mod 1 and zq mod 1 are both periodic and the associated
patterns are mirrors one of the other.

It is therefore natural to compare the orbit γ1 on T1 passing through p and the orbit γ̃ ′
1 on B1 passing through

(0.wN
γ1,p,0,0.w̄N

γ1,p) and going along the y-direction. Since γ̃ ′
1 is horizontal except in convergence boxes, it is the lift of

a periodic orbit γ ′
1 in the planar template T1 considered as a planar billiard. Therefore a knot-diagram of γ̃ ′

1 is obtained
from γ ′

1 by removing the ambiguities at crossings.
A crossing of γ ′

1 may arise in three situations only. Either it arises in a corner with two strands in the same box, in which
case the previous-or-next corner provides another crossing for the same pair of strands, so that the pair will disappear with
a Reidemeister-II-move, see Fig. 7. Or it arises when different ribbons cross, in which case the same ribbons cross in T1. Or
it arises at a corner when two ribbons become parallel just before a convergence box, in which case the crossing already
exists in γ1 when the two ribbons of T1 overlap. Therefore, the horizontal projection of γ̃ ′

1 can be distorted to γ1 using
Reidemeister-II-moves only, and so the two knots are isotopic.

We still have to address the case of a half-twist on a non-orientable template. This can be fixed with the billiard of
Fig. 8. So the proof is complete. �
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Fig. 9. The billiard associated to Ghrist’s template.

Fig. 9. Le billard associé au patron de Ghrist.

Note that our construction can be smoothed so that the boundary of the billiard becomes a smooth surface. On the other
hand, the parabolae are crucial in order to double the coordinates, preventing us to construct a billiard with piecewise-linear
boundary. We are left with these two questions:

(i) Is it possible to construct a polygonal billiard containing all links as periodic orbits?
(ii) Is it possible to construct a convex billiard containing all links as periodic orbits?
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