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Stein unbiased risk estimation is generalized twice, from the Gaussian shift model to
nonparametric families of smooth densities, and from the quadratic risk to more general
divergence type distances. The development relies on a connection with local proper
scoring rules.
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r é s u m é

La méthode d’estimation du risque Steinien est doublement généralisée, d’une part du
modèle de translation Gaussien à des familles non paramétriques et d’autre part du risque
quadratique à des distances du type divergence plus générales. Cette extension repose sur
une relation avec des règles d’évaluation locales propres.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction: SURE and the Hyvärinen score

Consider the problem of estimating the parameter θ in the standard Gaussian shift family Pθ = N (θ, Id), θ ∈ R
d , based

on an observation x ∈ R
d . Let T be an estimator of θ of the form T = x + g(x). Using partial integration, Stein [8] showed

that under weak conditions about g , the quadratic risk R(T , θ) = Eθ |T − θ |2 of T can be estimated unbiasedly by the
expression R̂(T ) = 2 div g(x) + |g(x)|2 + d called SURE (Stein unbiased risk estimate), so that Eθ R̂(T ) = R(T , θ) for every
θ ∈ R

d . Here | · | and 〈·,·〉 denote the Euclidean norm and inner product on R
d , respectively, and div g is the divergence of g .

If in particular g = ∇ log f for some function f > 0 on R
d , the risk estimate becomes

R̂(T ) = 2� log f (x) + ∣∣∇ log f (x)
∣∣2 + d, (1)

where as usual, ∇ denotes the gradient and � = div∇ the Laplace operator on R
d . This special case occurs if T is the pos-

terior mean with respect to a prior distribution π : then T = x +∇ log f (x) where f (x) = ∫
pθ (x)dπ(θ) is the corresponding

mixture density, so that g = ∇ log f .
The striking similarity between SURE and the Hyvärinen score [5],

H(p, x) = 2
�p(x)

p(x)
−

∣∣∣∣∇p(x)

p(x)

∣∣∣∣2

= 2� log p(x) + ∣∣∇ log p(x)
∣∣2

, (2)

has been noted in, e.g., [6]. In Eq. (2), p denotes a sufficiently smooth, strictly positive probability density on R
d . Originally,

the Hyvärinen score was introduced for score matching, a minimum distance type estimation method. Its formal similarity
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to SURE is substantiated on reexpressing the risk of T as a distance between densities. Consider the Hyvärinen divergence
defined for smooth, positive densities p,q on R

d as

dH(p,q) =
∫ ∣∣∇ log p(y) − ∇ log q(y)

∣∣2
q(y)dy. (3)

If p = f is a mixture density as above and q = pθ is the density of Pθ , we have ∇ log f (x)−∇ log pθ (x) = ∇ log f (x)+x−θ =
T − θ, where again T = x + ∇ log f (x) is the corresponding posterior mean. Consequently,

R(T , θ) = Eθ |T − θ |2 =
∫ ∣∣∇ log f (x) − ∇ log pθ (x)

∣∣2
pθ (x)dx = dH( f , pθ ), (4)

that is, the risk R(T , θ) of the parameter estimate T = x + ∇ log f (x) equals a distance between densities, dH( f , pθ ). Furthermore,
the analogue of SURE in the density scenario is the Hyvärinen score H( f , x), essentially. In fact, Hyvärinen’s idea, reinventing
Stein’s, was to apply partial integration to (3) which, assuming boundary terms vanish, gives

dH(p,q) =
∫ (

2� log p(y) + ∣∣∇ log p(y)
∣∣2)

q(y)dy +
∫ ∣∣∇ log q(y)

∣∣2
q(y)dy; (5)

cf. [1,5]. Since
∫ |∇ log pθ (x)|2 pθ (x)dx = d (θ ∈ R

d) in the standard normal case, where q = pθ , it follows that

Eθ

(
H( f , x) + d

) = Eθ

(
2� log f (x) + ∣∣∇ log f (x)

∣∣2 + d
) = dH( f , pθ ). (6)

That is, the modified Hyvärinen score H( f , x) + d represents an unbiased estimate of the distance dH( f , pθ ) of f from the unknown
“true” density pθ , for any density f > 0 on R

d satisfying suitable regularity conditions.
The purpose of this note is to expand on this aspect of unbiased risk estimation by tying it to scoring rules. Local proper

scoring rules are constructed as gradients of concave functionals [3,4], and then shown to generalize SURE in that they
furnish unbiased estimates of modified Bregman type distances. The development is related to (parts of) work by Dawid
and Lauritzen [1]. See also [2,7].

2. Local proper scoring rules and unbiased risk estimation

We restrict the discussion of scoring rules to the setting relevant for this note, and refer to [3] for general information.
Let P denote the class of all probability densities with respect to the Lebesgue measure on R

d such that the following
conditions hold for every p ∈ P : (P1) p ∈ C2; (P2) p > 0 everywhere on R

d; (P3) for every m > 0 and i, j ∈ {1, . . . ,d}
lim|x|→∞|x|m(

p(x) + ∣∣∂xi p(x)
∣∣ + ∣∣∂2

xi x j
p(x)

∣∣) = 0;
(P4) there exists a = a(p) > 0 such that for i, j ∈ {1, . . . ,d},

lim|x|→∞|x|−a
(∣∣log p(x)

∣∣ +
[

∂xi p(x)

p(x)

]2

+
|∂2

xi x j
p(x)|

p(x)

)
= 0.

The class P is quite large, being convex and comprising, e.g., all normal and logistic distributions.
A scoring rule is a mapping S : P × R

d → R assigning a numerical score, S(p, x), to the density forecast, p, when the
observation that materializes is x. We write S(p,q) = ∫

S(p, x)q(x)dx = EqS(p,·) for the expected score when the density
forecast is p and the probability measure underlying x is q(x)dx. The scoring rule S is (strictly) proper relative to P if
S(q,q) � S(p,q) for all p,q ∈ P (with equality only if p = q). The scoring rule S is local (of order two, for the class P ) if
there exists a real function s such that

S(p, x) = s
(
x, log p(x),∇ log p(x),∇2 log p(x)

) (
p ∈ P, x ∈ R

d),
∇2 f (x) denoting the Hessian matrix of second-order partial derivatives of a function f : R

d → R at x.
The classical example of a (strictly) proper local scoring rule is the logarithmic score, S(p, x) = − log p(x). Another exam-

ple is the Hyvärinen score (2). The latter can be regarded as being local of order two, in the obvious sense, and the former
as local of order zero. Local scoring rules of any order m � 0 were recently investigated in [7], in the case d = 1. Hereafter,
“local” always is understood as “local of order two.”

The following result lifts the construction of local proper scoring rules in [2] from the one- to the higher-dimensional
case d � 1. Let K denote the class of the kernels k : R

d ×R
d → R satisfying the following conditions: (K1) k ∈ C2; (K2) there

are constants C, r ∈ (0,∞) such that whenever k∗ stands for the function k = k(x, y) or any of its partial derivatives up to
order two, then |k∗(x, y)| � C(1 + |x| + |y|)r (x, y ∈ R

d). With any k ∈ K we associate a functional Φ = Φk : P → R defined
by

Φ(p) =
∫

d

k
(
x,∇ log p(x)

)
p(x)dx (p ∈ P). (7)
R
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In view of the growth and decay conditions (K2), (P4), and (P3), the integral in (7) exists and is finite for every p ∈ P . Let
∇yk denote the partial gradient referring to the argument y ∈ R

d of k = k(x, y), and recall that div g(x) stands for the trace
of the total derivative at x of a function x 	→ g(x) mapping R

d into itself.

Theorem 2.1. Let k ∈ K, and suppose that the associated functional Φ is concave on P . Then

S(p, x) = k
(
x,∇ log p(x)

) − 1

p(x)
div

[
p(x)∇yk

(
x,∇ log p(x)

)]
(8)

is a local proper scoring rule relative to P . It is strictly proper if Φ is strictly concave. Furthermore, if y 	→ k(x, y) is concave on R
d for

every x ∈ R
d, then the functional Φ is concave on P .

Proof. The proof follows similar lines as in the case d = 1, see [2, Sections 4.1, 5.1]. We only indicate that the tangent
construction in [2, Section 4.1] yields the scoring rule (8). To compute the (weak) gradient of Φ at q ∈ P , let pt = (1−t)q+tp
where p ∈ P , t ∈ [0,1]. Formal differentiation ignoring all technicalities gives

d

dt

[
Φ(pt)

] =
∫

∂

∂t
[Kpt pt]dx =

∫
[Kpt ](p − q)dx +

∫ [
∂

∂t
Kpt

]
pt dx, (9)

wherein we put Kpt (x) = k(x,∇ log pt(x)) and omitted the argument x of the integrands. For the last integral in (9) we get
by the divergence theorem, assuming the boundary integral vanishes,∫ 〈

∇yk(·,∇ log pt),∇
(

p − q

pt

)〉
pt dx = −

∫
div

[
pt∇yk(·,∇ log pt)

] p − q

pt
dx. (10)

Setting t = 0 in (9) and (10) and noting that p0 = q we find that

d

dt

[
Φ(pt)

]∣∣∣∣
t=0

=
∫ {

k(·,∇ log q) − 1

q
div

[
q∇yk(·,∇ log q)

]}
(p − q)dx. (11)

Thus, the gradient of Φ at q is given by the expression in curly brackets in (11). The scoring rule resulting from the tangent
construction, S(q,·), differs from this gradient only by a correction term which can be shown to vanish. The negligibility
of the boundary integral in (10), and all the technicalities (existence of integrals, exchangeability of differentiation and
integration, etc.) can be settled similarly as in [2, Section 4.1], using the assumptions made about the classes P and K. �

Any convex combination of a scoring rule S as in Theorem 2.1 with the logarithmic score yields a local proper scoring
rule. In the case d = 1, scoring rules of this form exhaust the class of all local proper scoring rules [2,7]. The complete
characterization in the case d > 1 remains open.

Examples. Let k ∈ K be a kernel of the form k(x, y) = k(y) = ψ(|y|), where ψ is a concave C2-function on [0,∞) with
ψ(0) = ψ ′(0) = 0. Then y 	→ k(y) is concave on R

d , and the corresponding scoring rule (8) is proper. Explicitly we have

S(p,·) = ψ
(|σ |) − ψ ′(|σ |)

|σ |
(|σ |2 + � log p

) −
[
ψ ′′(|σ |) − ψ ′(|σ |)

|σ |
]〈

σ

|σ | ,
(∇2 log p

) σ

|σ |
〉

where σ = ∇ log p. For ψ(t) = −t2 we obtain the Hyvärinen score (2); putting ψ(t) = − log cosh t yields another interesting
example parallel to [2, Example 5.3].

A local scoring rule S that is proper relative to P gives rise to a Bregman type divergence measure dS(p,q) = S(p,q) −
S(q,q) on P × P . The following representation of dS is closely related to [7, Eq. (53)].

Theorem 2.2. Suppose that S is of the form (8) for some kernel k ∈ K such that y 	→ k(x, y) is concave on R
d for every x ∈ R

d. Then
the divergence dS admits the representation

dS(p,q) = Eq

{
k(·,∇ log p) − k(·,∇ log q) +

〈∇q

q
− ∇p

p
,∇yk(·,∇ log p)

〉}
(p,q ∈ P). (12)

Proof. Let p,q ∈ P . By the assumptions on P and K, the divergence theorem applied to the scalar function u(x) = q(x)/p(x)
and the vector field v(x) = p(x)∇yk(x,∇ log p(x)) gives

lim
r→∞−

∫
q

p
div

[
p ∇yk(·,∇ log p)

]
dx = lim

r→∞

∫ 〈∇q

q
− ∇p

p
,∇yk(·,∇ log p)

〉
q dx. (13)
|x|�r |x|�r
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The relation (12) follows on writing dS(p,q) = Eq{S(p,·) − S(q,·)}, substituting (8) and using (13), and observing that∫
q−1 div(q∇yk(·,∇ log q))q dx = 0. �

Note that the expression in curly brackets in (12) is nonnegative because for a concave function f on R
d one has

f (y1) − f (y2) � 〈y1 − y2,∇ f (y1)〉 (y1, y2 ∈ R
d). For the Hyvärinen score, where k(x, y) = −|y|2, that expression becomes

|∇ log p − ∇ log q|2, and dS becomes the Hyvärinen divergence (3).
To clarify the connection with SURE we note that the partial integration in (13) was used conversely by Stein and

Hyvärinen, to pass from the risk representation (12) to an expression of the form Eq{S(p,·) − S(q,·)}. In the latter, the
scoring rule S(p,·) may serve as an unbiased estimate of EqS(p,·), while the term EqS(q,·) is the same for all candidates p,
hence can be ignored if the focus is on risk comparison. In nonparametric density estimation, e.g., risk comparison of
competing estimates is applied for bandwidth selection, using cross-validation. Briefly, if p̂n = p̂n(·|x1, . . . , xn) is an estimate
of the unknown density q ∈ P underlying the i.i.d. observations x1, . . . , xn that is symmetric in the xi , the cross-validated
expression R̂n(p̂n−1) = n−1 ∑n

i=1 S(p̂n,−i, xi) is an unbiased estimate of Rn−1(p̂n−1,q), where Rn(p̂n,q) = EqS(p̂n,q) denotes
the modified risk ignoring the term EqS(q, ·) = S(q,q), which depends only on q.

The possibility of risk estimation is of course not confined to the local scoring rules considered here, as any proper
scoring rule S, whether local or not, gives rise to a divergence measure dS. Therefore, cross-validatory estimation of the
(modified) risk generally is feasible, although exact unbiasedness as with the local scoring rules may not be achievable
when global terms are involved. For example, unbiased estimation of the term

∫
p(x)2 dx entering the quadratic score [3]

does not seem possible.
The particular interest of the scoring rules of the form (8) ensues from the fact that they do not require the knowledge of

the normalizing constants of the probability densities, which may be unknown or hard to obtain in complex settings [5,7].
This advantage can be combined with other desirable features such as improved robustness by working, for instance, with
the log cosh scoring rule mentioned above.
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