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We discuss global existence and asymptotic behaviour of a price formation free boundary
model introduced by Lasry and Lions in 2007. Our results are based on a construction
which transforms the problem into the heat equation with specially prepared initial datum.
The key point is that the free boundary present in the original problem becomes the zero
level set of this solution. Using the properties of the heat operator we can show global
existence, regularity and asymptotic results of the free boundary.
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r é s u m é

Nous discutons l’existence globale et le comportement local d’un modèle de formation de
prix introduit par Lasry et Lions en 2007. Nos résultats reposent sur une transformation
reliant ce problème à une solution de l’équation de la chaleur avec données initiales
particulières. Le point clé est que la frontière libre, présente dans le problème original, est
conservée comme ensemble de niveau zéro de cette solution. Utilisant les propriétés de
l’opérateur de la chaleur nous pouvons montrer des résultats de régularité de la frontière
libre et par suite l’existence globale.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

This Note is concerned with a mean field game model in economics which was introduced in a paper by J.-M. Lasry and
P.-L. Lions, cf. [3]. The setup consists of a (large) group of buyers and a (large) group of vendors trading a good at a certain
price p(t), with a fixed transaction cost a. The model is given by a non-linear parabolic free boundary evolution equation
that describes the dynamical behaviour of the densities of buyers and vendors which in turn define the price. It is set up
on the whole real line, i.e. the price can, in principle, take arbitrarily large values. The model is given by the equation
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f (x,0) = f I , p(0) = p0, for some p0 in R, (3)

with compatibility conditions at time t = 0:

(A1) f I (p0) = 0 and f I (x) > 0 for x < p0 and f I(x) < 0 for x > p0.

For the following we assume that f I is in L1(R) and bounded. This model has been studied in a number of papers, cf. [1,2]
and [4]. Here we shall present the first global existence result of a smooth solution on the whole real line. In the following,
we shall denote by f = f + − f − the decomposition of a function into its positive and negative part.

2. Connection to the heat equation

In this section we shall prove that there is a one to one relation between solutions of the aforementioned FBP (1)–(3)
and solutions of the heat equation supplemented with specially prepared initial data. This will lead to a global existence
result in a very elegant way.

Theorem 2.1. Let f = f (x, t) be a solution of (1)–(3) on the time interval [0, T ] with T > 0. Then there exists a linear transformation
from f to a function F = F (x, t), being a solution of the heat equation, such that the graph of the zero level set of F is p(t). By reversing
the transformation, each solution of the heat equation such that the zero level set of the solution is a smooth graph for 0 � t � T can
be transformed into a solution of the FBP with the same p(t).

The construction is based on the observation that the second derivative of − f − at the free boundary p(t) is precisely the
negative value of the weighted delta mass centered at p(t) + a, as it appears in Eq. (1). Analogously, the second derivative
of f + is the negative of the weighted delta mass of Eq. (1), centered at p(t) − a.

Proof. Let f I = f I (x) be a given initial datum satisfying assumption (A1). Let f = f (x, t) be the solution of (1)–(3) in the
time interval [0, T ] (such a solution exists due to [4, Theorem 2.6]). Now we define

F (x, t) =
{∑∞

n=0 f +(x + na, t), x < p(t),

−∑∞
n=0 f −(x − na, t), x > p(t).

We remark that due to the boundedness of f these sums converge in D′(R × [0,∞)). It is very easy to check that F
satisfies, in the sense of distributions, the heat equation with initial datum F (x, t = 0) =: F I (x), given by (4). Clearly, the free
boundary p = p(t) is now the zero level set of F . Now consider a given F = F (x, t), solution of the heat equation in [0, T ].
Assume the initial datum is of the form

F I (x) =
{∑∞

n=0 f +
I (x + na), x < p0,

−∑∞
n=0 f −

I (x − na), x > p0,
(4)

for an arbitrary function f I satisfying (A1). Then, we can construct a solution of the FBP (1)–(3) with the initial datum f I
in the following way:

f (x, t) =
{

F +(x, t) − F +(x + a), x < p(t),

−F −(x, t) + F −(x − a), x > p(t).

Again, by construction, the zero level set of F becomes the free boundary of (1)–(3). �
Theorem 2.2 (Global existence). There exists a unique smooth solution f = f (x, t) of (1)–(3) for t ∈ [0,∞). Furthermore, p ∈
C([0,∞)).

Proof. Let F I be the transformed initial datum corresponding of f I and let F be the solution of the heat equation with initial
datum F I . Abusing notation, we denote by p = p(t) the zero level set of F . First we note that oscillations of p(t) yielding
a ‘fat’ free boundary cannot occur as they contradict the x-analyticity of solutions of the heat equation. Furthermore, due
to [4, Lemma 2.9] we know that fx(p(t), t) < 0 for all t > 0 (by the Hopf Lemma) and the min–max principle implies that
p = p(t) is the graph of a function. Hence we only need to exclude the existence of t∗ such that |p(t)| becomes unbounded
as t → t∗ . We write

F (x, t) =
∞∫

−∞
G(t, z)F I (x − z)dz =

x−p0∫
−∞

G(t, z)F −
I (x − z)dz −

∞∫
x−p0

G(t, z)F +
I (x − z)dz, (5)

where G(t, x) = 1√
4πt

exp( x2

4t ) is the 1-d heat kernel. Due to boundedness of f and its construction, F grows at most linearly

at |x| = ∞. Thus second term on the right-hand side in (5) tends to zero as x → +∞. For the first term we have
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x−p0∫
−∞

G(t, z)F −
I (x − z)dz =

∞∫
p0−x

G(t, z)F I (x + z)dz � C

p0+a∫
p0

∣∣F I (x + z)
∣∣dz.

Due to (4) we have

p0+a∫
p0

∣∣F I (x + z)
∣∣dz =

∞∑
n=0

x+p0−(n−1)a∫
x+p0−na

f −
I (y)dy � const > 0.

Thus for x large enough, this term dominates in (5) and thus F (·, t) becomes negative. By the same argument we show that
for large negative x, F (·, t) becomes positive and thus there must exist a unique x with −∞ < x < ∞ such that F (x, t) = 0.
From these arguments we conclude that p(t) is defined and continuous for all t . �
Remark 1. A similar analysis produces solutions of the Neumann problem in the interval [−L, L] and certain examples
of non-existence. In this case the associated solution of the heat equation satisfies the unusual Neuman type boundary
condition Fx(±L, t) = Fx(±L ∓ a, t).

3. Asymptotic behaviour

From now on we assume an initial datum f I with p0 = 0 and a = 1. For the following we define the function erf(u) :=
1√
4π

∫ ∞
u e− x2

4 dx. In this section, we shall prove:

Theorem 3.1. Let f = f (x, t) be a solution of (1)–(3). If M+ := ∫ 0
−∞ f +(z)dx 	= ∫ ∞

0 f −(z)dz =: M− , then p(t) ∼ √
t q∞ with

erf(q∞) = M−/M+ as t → ∞. If M− = M+ , i.e. the total mass of f is zero, then

p(t) =
∫ ∞
−∞ z| f (z)|dz

M+ + M− + O

(
1√

t

)
.

Proof. From (4) and (5) we obtain at x = p(t)

0 = −
∞∫

0

1√
4πt

∞∑
n=0

exp

(
−|p(t) − z + n|2

4t

)
f −(z)dz +

0∫
−∞

1√
4πt

∞∑
n=0

exp

(
−|p(t) − z + n|2

4t

)
f +(z)dz.

The sums in the above equation for the free boundary can be interpreted as Riemann sums converging to integrals. We
easily obtain:

∞∫
0

erf

(
p(t)√

t
− z√

t
− 1

2
√

t

)
f −(z)dz =

0∫
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(
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(
p(t)√

t
− z√

t
+ 1

2
√

t

))
f +(z)dz + O

(
1

t

)
.

Now we define q(t) := p(t)/
√

t and conclude the proof of the first part of the theorem. We remark that in particular q∞ 	= 0
if M+ 	= M− . To prove the second part, we note that as t → ∞ we have

erf

(
p(t) − z − 1

2√
t

)
∼ 1

2
− 1√

4πt

(
p(t) − z − 1

2

)
+ O

(
1

t

)
.

Using the assumption M+ = M− , this allows us to write (5) as

0 = F
(

p(t), t
) = p(t)√

4πt

( ∞∫
−∞

∣∣ f (z)
∣∣dx −

( ∞∫
0

zf −(z)dz +
0∫

−∞
zf +(z)dz

))
+ O

(
1

t

)

for t large enough. Thus we immediately obtain

p(t) =
∫ ∞
−∞ z| f (z)|dz

M+ + M− + O

(
1√

t

)
,

which concludes the proof. �
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