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We give some new results on algebraic independence in the frame of Mahler’s method,
including algebraic independence of values at transcendental points. We also give some
new measures of algebraic independence. In particular, our results furnish for n � 1
arbitrarily large new examples of families of members (θ1, . . . , θn) ∈ Rn normal in the sense
of the definition formulated by G. Chudnovsky (1980) [2].

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous donnons quelques nouveaux résultats d’indépendance algébrique de valeurs de
fonctions satisfaisant des équations fonctionnelles, incluant l’indépendance algébrique
en un point transcendant. Ces resultats sont obtenus avec la méthode de Mahler. En
particulier, certains de nos résultats fournissent pour n � 1 arbitrairement grand des
nouvelles familles de nombres (θ1, . . . , θn) ∈ Rn normaux au sens de la définition formulée
par G. Chudnovsky (1980) [2].

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let p(z) = p1(z)/p2(z) be a rational function with coefficients in Q. Throughout this Note we set d := deg p =
max(deg p1,deg p2), δ := ordz=0 p = ordz=0 p1 − ordz=0 p2.

Definition 1. Let f1(z), . . . , fn(z) ∈ Q[[z]] be functions analytic in some neighborhood U of 0, algebraically independent over
C(z), with algebraic coefficients and satisfying a system of functional equations of the following type

a(z) f (z) = A(z) f
(

p(z)
) + B(z), (1)

where f (z) = ( f1(z), . . . , fn(z)) ∈ Q[[z]]n , a(z) ∈ Q[z] and A (resp. B) is an n × n (resp. n × 1) matrix with coefficients in

Q[z]. If all these conditions on f1(z), . . . , fn(z) ∈ Q[[z]] are verified, we shall refer to such n-tuple of functions as a set of
N-functions.

Algebraic independence of values of sets of N-functions was studied by Becker, Mahler, Nishioka, Töpfer and others
[1,5–7,10]. For this purpose one can also use a general method developed in [9] (see also [8]). This method requires the
so-called multiplicity estimate. Recently a new multiplicity lemma for solutions of (1) was established in [11, Theorem 3.11]
and [12]. Using this multiplicity estimate with the general method from [9] one can deduce the following theorems, which

E-mail address: evgeniyzorin@yandex.ru.
1631-073X/$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2011.05.012

http://dx.doi.org/10.1016/j.crma.2011.05.012
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:evgeniyzorin@yandex.ru
http://dx.doi.org/10.1016/j.crma.2011.05.012


608 E. Zorin / C. R. Acad. Sci. Paris, Ser. I 349 (2011) 607–610
improve certain previously known results and establish new facts on algebraic independence and measures of algebraic
independence. Proofs with all the details can be found in [11].

Theorem 2. Let ( f1, . . . , fn) be a set of N-functions. Assume that the rational function p(z) (appearing in (1)) is a polynomial:
p(z) ∈ Q[z] and satisfies δ = ordz=0 p � 2. We also recall the notation d = deg p. Let y ∈ Q∗ be such that

p[h](y) → 0

(as h → ∞) and no iterate p[h](y) is a zero of z det A(z).
Then for any ε > 0 there is a constant C = C(ε) > 0 such that for any variety W ⊂ Pn

Q
of dimension k < n + 1 − log d

log δ
, one has

log Dist(x, W ) � −C
(

h(W ) + d(W )

n+1−k+ε

n+1−k− log d
log δ

) n+1
n−k − log δ

log d
k+1
n−k × d(W )

log δ
log d

k+1
n−k , (2)

where x = (1 : f1(y) : . . . : fn(y)) ∈ Pn
C

.

Remark 3. The definition of Dist(x, W ) (for a point x ∈ Pn and a subvariety W of the same space) can be found in [4,
Chapter 6, § 5], or [11, § 1.3] (see [11, Definition 1.17] and discussion after it). There are two simple cases which are
important in order to understand this notion. First of all, if W is a hypersurface defined by a homogeneous polynomial P ,
then Dist(x, W ) is essentially ‖P (x)‖ (more precisely, in this case log Dist(x, W ) = log‖P (x)‖ − deg(P ) · log‖x‖ − log‖P‖).
So essentially, for k = n − 1 in Theorem 2, one can substitute log ‖P (x)‖ in place of log Dist(x, W ) in the l.h.s. of (2). In this
particular case one obtains an estimate which is usually known as a measure of algebraic independence.

On the other hand, for all points x ∈ Pn and all subvarieties W ∈ Pn one has Dist(x, W ) = 0 iff x ∈ W . Therefore, for k
as in Theorem 2 (i.e. if k < n + 1 − log d

log δ
) at least k + 1 of the values f1(y), . . . , fn(y) are algebraically independent over Q

(since the r.h.s. of (2) is > −∞). Using this fact we readily deduce the following two corollaries:

Corollary 4. Assuming the conditions of Theorem 2 one has

tr.deg.Q Q
(

f1(y), . . . , fn(y)
)
� n + 1 −

[
log d

log δ

]
.

Corollary 5. Assuming the conditions of Theorem 2 and log d
log δ

< 2 one has

tr.deg.Q Q
(

f1(y), . . . , fn(y)
) = n. (3)

Corollary 4 improves the lower bound

tr.deg.Q Q
(

f1(y), . . . , fn(y)
)
�

⌈
(n + 1)

log δ

log d
− 1

⌉
,

established by Theorem 3 in [10], where �∗	 denotes the smallest integer bigger than ∗.
Corollary 5 improves Corollary 2 of [10], where the case n = 1 of (3) is treated.
We can also give a measure of algebraic independence of values y, f1(y), . . . , fn(y), for arbitrary y ∈ C∗ . This type of

results for transcendental y has not been considered before, though our estimates in this situation are weaker than in the
case of algebraic y.

Theorem 6. Let ( f1, . . . , fn) be a set of N-functions. Assume that p(z) ∈ Q[z] with δ = ordz=0 p(z) � 2 and d = deg p(z). Let y ∈ C∗
be such that

p[h](y) → 0

(with h → ∞) and no iterate p[h](y) is a zero of z det A(z). Then for any ε > 0 there is a constant C = C(ε) > 0 such that for any
variety W ⊂ Pn+1

Q
of dimension k < n + 1 − 2 log d

log δ
, one has

log Dist(x, W ) � −C
(

h(W ) + d(W )

n+1−k− log d
log δ

+ε

n+1−k−2 log d
log δ

)2 n+1
n−k − log δ

log d
k+1
n−k × d(W )

log δ
log d

k+1
n−k − n+1

n−k ,

where x = (1 : y : f1(y) : . . . : fn(y)) ∈ Pn+1
C

.

As before, one readily deduces two corollaries:
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Corollary 7. Assuming the conditions of Theorem 6 one has

tr.deg.Q Q
(

y, f1(y), . . . , fn(y)
)
� n + 1 −

[
2

log d

log δ

]
.

Corollary 8. Assuming the conditions of Theorem 6 and log d
log δ

< 3/2 one has

tr.deg.Q Q
(

y, f1(y), . . . , fn(y)
)
� n − 1. (4)

The next theorem improves Theorems 1 and 2 of [10], qualitatively and quantitatively.

Theorem 9. Let ( f1, . . . , fn) be a set of N-functions. In this statement we accept any rational function p(z) ∈ Q(z) in the system (1)
(whereas in Theorems 2 and 6 we supposed p(z) to be a polynomial, p(z) ∈ Q[z]). We keep the notation d = deg p, δ = ordz=0 p � 2.
Assume that fi(0) = 0, i = 1, . . . ,n. Let y ∈ U ∩ Q satisfies limh→∞ p[h](y) = 0. Assume also that for any h ∈ N the number p[h](y)

is not a zero of either det A(z) or z · a(z) (recall that A(z) and a(z) are introduced in Definition 1). Then there is a constant C > 0 such
that for any variety W ⊂ Pn

Q
of dimension k < 2n + 1 − log d

log δ
(n + 1), one has

log Dist(x, W ) � −C
(

h(W ) + d(W )

1

1− log d
log δ

n+1
2n−k+1

) n+1
n−k − log δ

log d
k+1
n−k

d(W )
k+1
n−k ,

where x = (1 : f1(y) : . . . : fn(y)) ∈ Pn
C

. In particular,

tr.deg.Q Q
(

f1(y), . . . , fn(y)
)
� 2n + 1 − log d

log δ
(n + 1). (5)

Now we give concrete examples of sets of N-functions with n elements, where n can be chosen arbitrarily. In the sequel
we consider a particular case of (1) when this system has the diagonal form:

χi(z) = χi
(

p(z)
) + qi(z), i = 1, . . . ,n, (6)

where p ∈ Q(z) and qi ∈ Q[z], i = 1, . . . ,n. Assuming deg qi � 1 and qi(0) = 0, i = 1, . . . ,n, ordz=0 p � 2 we obtain solutions
of (6) analytic in some neighborhood of 0:

χi(z) = χi
(

p(z)
) + qi(z), i = 1, . . . ,n. (7)

Lemma 10 below allows to verify easily the algebraic independence of χ1, . . . ,χn over C(z). It is an easy corollary of
[10, Lemma 6] (as well as [3, Theorem 2]).

Lemma 10. Let n ∈ N∗ , qi ∈ C[z], i = 1, . . . ,n and p ∈ C[z] satisfying qi(0) = 0, i = 1, . . . ,n, p(0) = 0 and p(z) �= z. Let
χ1, . . . ,χn ∈ C((z)) be functions defined by (7). Suppose that 1,q1, . . . ,qn are C-linearly independent and at least one of the fol-
lowing conditions is satisfied:

(i) deg p � deg(
∑n

i=1 siqi(z)) for all (s1, . . . , sn) ∈ Cn \ {0},
(ii)

∑n
i=1 siχi(z) /∈ C[z] for all (s1, . . . , sn) ∈ Cn \ {0}.

Then the functions χ1, . . . ,χn are algebraically independent over C(z).

Using this lemma (especially point (i) which is due to Th. Töpfer) we can produce a large family of algebraically inde-
pendent sets of functions (7). Obviously, all these collections χ1, . . . ,χn are sets of N-functions so we can apply Theorems 2,
6, 9 and their corollaries.

Remark 11. In [2] G.V. Chudnovsky introduced the notion of “normality” of n-tuples (x1, . . . , xn) ∈ Cn . One says that
(x1, . . . , xn) is normal if it has a measure of algebraic independence of the form exp(−Ch(P )ψ(d(P ))), i.e. if for all poly-
nomial P ∈ Q[X1, . . . , Xn] \ {0} one has the estimate∣∣P (x1, . . . , xn)

∣∣ � exp
(−Ch(P )ψ

(
d(P )

))
, (8)

where C > 0 is a real constant and ψ : N → R+ is an arbitrary function. If one has the estimate (8) with ψ(d) = dτ for
some constant τ one says that this n-tuple has a measure of algebraic independence of Dirichlet’s type. In this situation one
also defines Dirichlet’s exponent to be the infimum of τ such that ψ(d) = dτ in (8). In [2] G.V. Chudnovsky mentioned that
for n � 2 the examples of normal n-tuples are quite rare, though almost all (in the sense of Lebesgue measure) n-tuples of
complex numbers are normal. Th. Töpfer gave a construction for a family of examples of normal n-tuples with Dirichlet’s
exponent 2n + 2 (see Theorem 1 and Corollary 4 of [10]). Our theorems assert Dirichlet’s exponent n + 2 for a subfamily of
these examples and allow to produce new examples of normal n-tuples (due to the condition (ii) of Lemma 10).
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