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In this Note we give another proof of the fact that a random overlap array, which
satisfies the Ghirlanda–Guerra identities and whose elements take values in a finite
set, is ultrametric with probability one. The new proof bypasses random change of
density invariance principles for directing measures of such arrays and, in addition to the
Dovbysh–Sudakov representation, is based only on elementary algebraic consequences of
the Ghirlanda–Guerra identities.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note nous donnons une nouvelle preuve du fait qu’une matrice aléatoire infinie,
qui satisfait l’identité Ghirlanda–Guerra et dont les coefficiants prennent leurs valeurs dans
un ensemble fini, est ultramétrique avec probabilité un. La preuve utilise uniquement des
conséquences algébriques élémentaires des identités Ghirlanda–Guerra et la représentation
de Dovbysh–Sudakov.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main result

In this Note we will give a simplified proof of the main result in [5]. Let us consider an infinite random array R =
(Rl,l′ )l,l′�1 which is symmetric, non-negative definite and weakly exchangeable, i.e. for any n � 1 and for any permutation ρ
of {1, . . . ,n} the matrix (Rρ(l),ρ(l′))l,l′�n has the same distribution as (Rl,l′ )l,l′�n. We assume that the diagonal elements are
identically 1, Rl,l = 1 and that the non-diagonal elements take finitely many values,

P(R1,2 = ql) = pl (1)

for some −1 � q1 < q2 < · · · < qk � 1 and pl > 0, p1 + · · · + pk = 1. The array R is said to satisfy the Ghirlanda–Guerra
identities [4] if for any n � 2 and any bounded measurable functions f = f ((Rl,l′ )l,l′�n) and ψ : R → R,

E f ψ(R1,n+1) = 1

n
E f Eψ(R1,2) + 1

n

n∑

l=2

E f ψ(R1,l). (2)
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By the positivity principle of Talagrand [8,10], the Ghirlanda–Guerra identities imply that R1,2 � 0 with probability one and,
therefore, we can assume that q1 � 0. The following result was proved in [5]:

Theorem 1.1. Under assumptions (1) and (2), the array R is ultrametric,

P
(

R2,3 � min(R1,2, R1,3)
) = 1. (3)

Another way to express the event in (3) is to say that

R1,2 � ql, R1,3 � ql �⇒ R2,3 � ql for all 1 � l � k. (4)

Infinite arrays that satisfy the Ghirlanda–Guerra identities arise as the limits of the overlap arrays in the Sherrington–
Kirkpatrick spin glass models (see e.g. [10,7]). The assumption (1) is purely technical (and unfortunately is not satisfied
in the most important situations). The first ultrametricity result was proved in [2] under different conditions which also
included (1), but instead of (2) the authors worked with the Aizenman–Contucci stochastic stability [1]. The original proof
of Theorem 1.1 in [5] utilized a key idea from [2], namely, the existence of directing measures guaranteed by the Dovbysh–
Sudakov representation result in [3], and we will still rely on this representation here. However, we will completely avoid
proving any invariance principles under random changes of density for the directing measure, which played crucial roles
both in [2] and [5] and our new induction will be quite elementary in nature. M. Talagrand gave a proof of Theorem 1.1
in [9] that did not use the Dovbysh–Sudakov representation but still used the invariance principle from [5]. The Dovbysh–
Sudakov representation [3] (for detailed proof see [6]) states that given a symmetric, non-negative definite and weakly
exchangeable array R, there exists a random measure μ on H × [0,∞), where H is a separable Hilbert space, such that R
is equal in distribution to the array

(
σ l · σ l′ + alδl,l′

)
l,l′�1 (5)

where (σ l,al) is an i.i.d. sequence from μ and σ · σ ′ denotes the scalar product on H . Let us denote by G the marginal of
μ on H . The following simple consequence of the Ghirlanda–Guerra identities (2) was proved in Theorem 2 in [5]:

Proposition 1.1. Under (1) and (2), the random measure G is (countably) discrete and is concentrated on the sphere of radius
√

qk
with probability one.

In particular, this implies that al = 1 −qk in (5) and without loss of generality we can redefine the array by Rl,l′ = σ l ·σ l′

for an i.i.d. sequence (σ l) from G. Since Rl,l′ = qk if and only if σ l = σ l′ , we have

P(R1,2 = qk, R1,3 = qk, R2,3 < qk) = 0,

which proves “ultrametricity at the level k” in the sense of (4). As in [2] and [5], we would like to find a way to make an
induction step and prove “ultrametricity at the level k −1”. The main new idea of the paper will be to consider the distribu-
tion of the array (Rl,l′ ) conditionally on the event that all replicas (σ l) are different and prove that this new distribution is
well-defined and satisfies all the conditions of the Dovbysh–Sudakov representation. Since on the above event the elements
of the new array cannot take value qk , the induction step will follow.

2. Proof

By Proposition 1.1, G = ∑
l�1 wlδξl for some random weights (wl) and random sequence (ξl) in H such that ξl · ξl = qk.

Let us denote by 〈·〉 the average with respect to G⊗∞ and by E the expectation with respect to the randomness of G. With
these notations, the Ghirlanda–Guerra identities (2) can be rewritten as

E
〈
fnψ(R1,n+1)

〉 = 1

n
E〈 fn〉E

〈
ψ(R1,2)

〉 + 1

n

n∑

l=2

E
〈
fnψ(R1,l)

〉
. (6)

For each n � 2, let us consider the event

An = {
Rl,l′ �= qk, ∀1 � l < l′ � n

}
(7)

and let Pn be the distribution of the n × n matrix Rn = (σ l · σ l′ )l,l′�n conditionally on An,

Pn(B) = E〈I(Rn ∈ B)I An 〉
E〈I An 〉

. (8)

It is obvious that Pn is concentrated on the symmetric non-negative definite matrices with off-diagonal elements now taking
values {q1, . . . ,qk−1} and Pn is invariant under the permutation of replica indices since the set An is. We will now show
that Pn+1 restricted to the first n replica coordinates coincides with Pn and, thus, the sequence (Pn) defines a law of the
infinite overlap array.
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Lemma 2.1. For any measurable function f of the overlaps on n replicas,

E
〈
f
(

Rn)I An+1

〉 = (1 − pk)E
〈
f
(

Rn)I An

〉
. (9)

Proof. Notice that An = {σ 1, . . . , σ n are all different} by Proposition 1.1 and, therefore,

I An+1 = I An −
∑

l�n

I An∩{Rl,n+1=qk}. (10)

This implies that

E
〈
f
(

Rn)I An+1

〉 = E
〈
f
(

Rn)I An

〉 −
∑

l�n

E
〈
f
(

Rn)I An I(Rl,n+1 = qk)
〉
.

Using the Ghirlanda–Guerra identities (6), for each l � n,

E
〈
f
(

Rn)I An I(Rl,n+1 = qk)
〉 = pk

n
E

〈
f
(

Rn)I An

〉 + 1

n

n∑

l′ �=l

E
〈
f
(

Rn)I An I(Rl,l′ = qk)
〉

= pk

n
E

〈
f
(

Rn)I An

〉

since An ⊆ {Rl,l′ �= qk} and, thus, I An I(Rl,l′ = qk) = 0. Adding up over l � n finishes the proof. �
First, using (9) inductively for f ≡ 1 we get E〈I An 〉 = (1 − pk)

n−1 and then dividing (9) by (1 − pk)
n ,

E〈 f (Rn)I An+1〉
E〈I An+1〉

= E〈 f (Rn)I An 〉
E〈I An 〉

. (11)

This means that the family (Pn) is consistent and by Kolmogorov’s theorem we can define the distribution of the infinite
array with the corresponding marginals given by Pn. Let us consider an array Q = (Q l,l′ )l,l′�1 with this distribution.

Proof of Theorem 1.1. By construction, Q is a symmetric, non-negative definite and weakly exchangeable array with diago-
nal elements equal to qk and off-diagonal elements taking values {q1, . . . ,qk−1} with probabilities P(Q 1,2 = ql) = pl/(1− pk).

Using the Dovbysh–Sudakov representation for the array Q implies that there exists a random measure G ′ on H such that
Q can be generated as

Q l,l′ = σ l · σ l′ + δl,l′
(
qk − σ l · σ l)

for an i.i.d. sequence (σ l) from G ′ . Since σ l · σ l′ ∈ {q1, . . . ,qk−1}, it is easy to see that the support of G ′ must be inside the
sphere of radius

√
qk−1 for, otherwise, with positive probability we could sample two points σ 1, σ 2 arbitrarily close to a

point σ such that ‖σ‖ >
√

qk−1 which would contradict that σ 1 · σ 2 � qk−1 (see [2] or [5] for details). Because of this, the
truncated array (Q l,l′ ∧ qk−1)l,l′�1 can be computed as

Q l,l′ ∧ qk−1 = σ l · σ l′ + δl,l′
(
qk−1 − σ l · σ l) (12)

and it is non-negative definite as the sum of two non-negative definite arrays. If we recall the definition (8), the matrix
(Q l,l′ )l,l′�n is obtained by sampling n configurations from the measure G = ∑

l�1 wlδξl conditionally on the event that
these configurations are different. Since with positive probability we can sample ξ1, . . . , ξn, we must have that the matrix
(ξl · ξl′ ∧ qk−1)l,l′�n is non-negative definite and, therefore, (ξl · ξl′ ∧ qk−1)l,l′�1 is non-negative definite with probability one.
This of course means that (Rl,l′ ∧ qk−1)l,l′�1 is also non-negative definite. Since the function x ∧ qk−1 can be approximated
by polynomials, the truncated overlap array also satisfies the Ghirlanda–Guerra identities and its elements now take values
in {q1, . . . ,qk−1}. One can proceed by induction on k. �

Even though we did not need it in the proof, one can show that the measure G ′ is actually concentrated on the sphere
of radius

√
qk−1 by using Proposition 1.1 and the following observation:

Lemma 2.2. The distribution of Q satisfies the Ghirlanda–Guerra identities,

E f
(

Q n)ψ(Q 1,n+1) = 1

n
E f

(
Q n)

Eψ(Q 1,2) + 1

n

n∑

l=2

E f
(

Q n)ψ(Q 1,l). (13)
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Proof. The proof is a straightforward computation using (10) and the Ghirlanda–Guerra identities. �
The idea of the proof of Theorem 1.1 suggests the following criterion of ultrametricity in the general case without the

assumption (1). Given q ∈ [0,1] such that P(R1,2 < q) > 0, consider the events

An,q = {
Rl,l′ < q, ∀1 � l < l′ � n

}
(14)

and let Pn,q be the distribution of Rn = (Rl,l′ )l,l′�n conditionally on An,q.

Theorem 2.3. Under (2), the array R is ultrametric if and only if for any q such that P(R1,2 < q) > 0 and any set B of 3 × 3 matrices
such that P3,q(R3 ∈ B) > 0 we have lim supn→∞ Pn,q(R3 ∈ B) > 0.

One can check that, in one direction, ultrametricity yields a relationship of the type (10) which implies the consistency of
the sequence (Pn,q) as in Lemma 2.1 and Pn,q(R3 ∈ B) = P3,q(R3 ∈ B). In the other direction, for any B with P3,q(R3 ∈ B) > 0
we can choose the limit Pq over a subsequence of Pn,q such that Pq(R3 ∈ B) > 0. If ultrametricity fails, one can make
a choice of a subset of non-ultrametric configurations B and q ∈ [0,1] that will lead to contradiction with the Dovbysh–
Sudakov representation for Pq .
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