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RESUME

Nous introduisons une classe d'intégrales d’action définies sur I'espace des chemins a
valeurs mesures de probabilité. Dans ce contexte I'action minimale existe et donne une
solution faible d'une équation d’Euler compressible. Nous montrons que I'équation de
Hamilton Jacobi associ'ee a la formulation variationnelle de I'équation d’Euler est bien
posée dans le sens des solutions de viscosité.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We denote by P, (Rd) the space of Borel probability measures over RY with fRd |x|2 p(dx) < oo endowed with the Wasser-
stein 2-metric d. AC(0, T; P»(R%)) is the class of P, (R%)-valued absolute continuous curves. Each p(-) in such class satisfies
the continuity equation p := 9;p = —div(pu) for some u (Theorem 8.3.1 of [1]). This equation expresses a conservation of
mass property and naturally introduces a class of parameterized curves, which motivates the following notion of tangent
space and associated geometric structure on P,(R%) (Chapter 8 of [1,6]):

Ho1p(RY):={meD'RY): Iml|l_1, <oo}. [m|%,,:= sup {2(m.¢)— el ,}. M
PeCE®Y)

In the above, ||<p||%_p = [pa IV@[*dp. It follows that [pq |ul?>dp = ||,é||271,p. We denote R :=R U {£o00}.

Definition 1.1 (Gradient of a function). Let f : P(R%) > R, pg € P2(RY), and f(pp) be finite. We say that gradient of f at g,
denoted gradf(pp), exists, if it can be identified as the unique element in D'(R?) satisfying the following property: for
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every p € Cfo(Rd) and the family of push forward of py through the flow generated by Vp, ie. {pP(t) € P2(RY: t € R}
with 8, pP + div(p?Vp) =0 and pP (0) = po, we have lim—ot~' (f(pP (1)) — f(pP(0))) =: (grad f (po), p).

Let R(p|ln) = /].Rd dplogd—ﬁ denote relative entropy, define Gibbs measure p¥ (dx) := Z;le*"” with Zy = fRd e~¥ dx,
and entropy functional S(p) := R(p||n?). It follows then grad S(p) = —Ap — div(oV¥) whenever S(p) < oo. Let ¥ :=
V¥ |2 — 2AY, the Fisher information I(p) := |\grad5(p)||2_1’p = fpa |v£|2 dx + [pa¥ dp (Appendix D.6 of [3]). Let v > 0,
we introduce a modified kinetic energy T(p, p) := %Ilﬁ + vgradS(p)HZ_l,p to reinforce entropy dissipation (see [4] and its

appendix). Let potential energy

1
V(p) :=/¢(X)p(dX)+5//¢(X—y)p(d)<)p(dy)+/F(p(x)) dx.
Rd

RIRA R4

Without pursuing generality, we assume that @, ¢ € C!(RY) have sub-quadratic growth, ®(—x) = ®(x), ¥ € C*(R?) is quasi-
convex and that the leading order terms for both ¥ and ¥ have polynomial growth of order bigger than 2 (e.g. ¥ (x) =
/x4 — 1x|2). Finally, let F € C' be such that |F(r)| < cr?, |rF'(r)| < c(1 +17) for some finite ¢ >0 and some y >1 where

yel[l,1+ %) when d >3 and y €[1,2) when d =1, 2. For notational convenience, we set V(p) = —oo whenever p €

P,(RY) has no Lebesgue density. The following is a consequence of Sobolev inequality and the fact that fRd p(dx) = 1.
See [4]:

Lemma 1.2. There exists a right continuous nondecreasing sub-linear function ¢ : R+ — Ry with |V (p)| < ¢(I(p)). Moreover, V is
continuous on finite level sets of I.

For p(-) € AC(0, T; P;(R%) with S(p(0)) < co, by the calculus in [1], fOT T(p, p)dt = %fOT(H,éHZ_Lp + v2I(p))dt +
v(S(p(T)) — S(p(0))). This observation motivates us considering Lagrangians L and L:P,@®RY x D'RY) — R U {+00} by
L:=T—Vand [:= %npuE],p + "2—21 — V, where L is understood as +oo when V = +oo. L takes value in R U {+o0}. L,

however, is only well defined when V is bounded from above in bounded sets of P, (RY) (e.g. F(r) < cr for some ¢ > 0 will
ensure this). Denote

T T

arlp0]= [ Lo prae Irlp0]i= [ Lo prde pe) C(0.TEPo(R)). @)
0 0

When both At and Jr are well defined and S(0(0)) < oo, we have the following useful identity: Ar[p()] = Jr[p()] +
v(S(p(T)) — S(p(0))) for p € AC(O, T; Pz(Rd)). Action minimizer for At and Jr are the same under mild conditions, and
solves a compressible Euler equation (Theorem 2.1)

orp + div(pu) =0
ot(pu) +div(pu @u) + VP(p) = —pV(p+ P * p) — 2v2pV(A—\/‘/ﬁ/_) - }1¢>
P(p) = pF'(p) — F(p).

If (o, u) are smooth for (3) to hold in classical sense, then it is also a weak solution as defined below.

—
w
—

Definition 1.3 (Weak solution). (p, u) is called a weak solution to system (3) if the following holds: p(-) € AC(0, T; P> (R%))
with S(o(T)) +f0T I(p(t))dt < 00; u: (0, T) x R — RY is Borel measurable satisfying fOT Jga lu(t, %12 p(t) dt < oo; moreover,
ot p + div(pu) = 0 holds in the distribution sense and

T
/ / [u(t, X) - (Ot %) + (U - VIEW, 0)p(t, X) + P(p)divE — (V(§ + D * p) - &) p(t, X)
0 Rd
+ vz(—E - DE - ve + Adive + 15 : VI/I)p(t,X)] dxdt =0,
1Y Y 2
holds for every & € C2°((0, T) x R?; RY), where D& = (3i€j) ¢, j) is a matrix.

A satisfactory Hamilton-Jacobi PDE theory can also be developed (Theorem 2.2), based upon a Hamiltonian induced by
the Lagrangian L, not the L. For V(p) < oo and n=—div(pVp) with p € CSO(R"), let

1
H(p.m:= sup ((n,m)—1,—L(p,m))=—(vgradS(p),n)_, ,+ Ellnllil,p +V(p).
meH_1,,(RY) ’
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We do not attempt to extend H to (p,n) € Po(RY) x H_Lp(Rd), but rely on a delicate choice of test functions [3,2] to
define the equations. Let Do := {fo(p) = %dz(p, Y)+€S(p)+c:ceR,6>0,0<€e<2v,y€ P, (RY)} and Dy := {fily) =
—%dz(p, y)—€eS(y)+c: ceR,0>0,0<e<2v,p€ P, (RY)}. Denote D := DyUD;. For each fy € Do and p in the effective

domain of fy (i.e. S(p) < 00), it can be proved that grad fo(p) € D’ (RY) exists. Furthermore, if I(p) < oo, then grad fo(p) €
Hq_,;(]Rd), and by Lemma 1.2, H(p, grad fo(p)) is finite. Similar relation also holds for f; € Dy. Let M(P2(R%): R) denote

the collection of measurable functions from P, (R9) to R. We define operator H : D — M(P,(R%); R) as follows:

H(p, gradf(p)) whenI(p) < oo
Hf(p):={ —o0 when I(p) = +o0, f € Dg (4)
400 when I(p) = +o0, f € Dy.

Lemma 1.4. Hfg : P> (R%) — R U {—oo} is upper semicontinuous for fo € Do and Hf; : Po(RY) > R U {400} is lower semicontin-
uous for f1 € Dy.

Let o > 0 and for simplicity in statement of the results, we restrict attention to h, g € C,(P2(RY)). More general results
can be found in [4]. By resolvent problem of the Hamilton-Jacobi PDE, we mean

f(p)—aHf(p) =h(p), peP2(RY). (5)

By Cauchy problem, we mean
U, p)=HUE, p), (t,p)€©,T)xP2(RY);  U®©,p)=g(p) peP(RY). (6)

Definition 1.5 (Resolvent problem). Let f € M(P2(R%); R); | f| < ¢(S) for some sub-linear function ¢ : Ry > Ry ; f is contin-
uous on finite level sets of S. Then

(i) f is called a viscosity sub-solution to (5) if for each fo € Do and pg € P2(RY) such that (f — fo)(0o) = suppepz(]Ra)(f —
fo)(p), we have =1 (f —h)(po) < Hfo(po).
(ii) f is called a super-solution to (5) if for each fi € D1 and pq € Po(RY) such that (f; — f)(p1) = suppepz(Rd)(ﬁ - N,

we have a~1(f — h)(p1) = Hf1(p1).

If f is both sub- and super-solutions to (5), we call it a solution.

Definition 1.6 (Cauchy problem). Let U € M([0, T] x Po(R9); R); |U(t, p)| < £(S(p)) for all (t, p) € [0, T] x P2(R?) for some
sub-linear function ¢ : Ry — R4 ; U is continuous on [0, T] x K; where K| :={p € P (RY): S(p) < L) for each L < oo. Then

(i) U is called a viscosity sub-solution to (6), if for each Ug(t, p) = %|t—s|2 + fo(p), and for each (tg, po) € [0, T] x P2(RY)
such that (U — Ug)(tg, po) = sup(typ)e[oﬂxpz(Rd)(U — Ug)(t, p), we have
(a) in the case of tg > 0, (—d;Ug + HUg)(to, po) = 0;
(b) in the case of to =0, limsup;_, o4 y— py,5(0<c UL, p) < g(po), for every C e Ry.

(ii) U is called a super-solution to (6), if for each U(s, y) = —%|t — 5|2+ f1(y) and for each (sg, yo) € [0, T] x P, (RY) such
that (U1 — U)(so, Y0) = sup<s’y)€[O’T]Xp2(Rd)(U1 —U)(s, y), we have
(a) in the case of so >0, (—dsU1 + HU1)(So, Y0) < 0;
(b) in the case of so =0, liminf;_, o4 'y, 5,)<c U, ¥') > g(o), for every C e R,.

If U is both sub- and super-solutions, we call it a solution.

In view of growth estimate |f| < ¢(S), €S(p) — f(p) is understood as +oo, when S(p) = +oc. Therefore, f — fo and
f1— f are always well defined on P, (R%). The case of U — Ug and U; — U is handled similarly.

2. Main results

Let P; be the transition probability such that p(t) := P;pg solves Fokker-Planck equation 9;p = Ap + div(pV¥) with
0(0) = po. We define D(p1]l00: T) :=infrerr(py.p1) RGTIIPvr ® po) Where I1(pg, p1) C P, (R x RY) is the class of probability
measures on R? x RY with first marginal pg and second marginal p;. Ref. [4] proves the following:
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Theorem 2.1. Let S(po) + D(p1llpo; T) < oo. Then there exists a p(-) € AC(0, T; Po(RY)) satisfying inf{Jr[o()]: o() €
C([0, T); P2(RY)), o (0) = 00,0 (T) = p1} = Jr[p(-)]. There exists a Borel vector field u : (0, T) x R? — RY with

T

[/|u(t,x)|2dxdt <00

0 Rd

such that the pair (p, u) is a weak solution (Definition 1.3) to (3). Additionally, if the extra condition F (r) < cr holds for some ¢ > 0,
then inf{Ar[o ()]: o () € C([0, T]; P2(RY), 6 (0) = po, 0 (T) = p1} = Ar[p()]1 = Jr[p()] + v(S(p1) — S(p0)).

At least formally, one can show u = —V¢ for some ¢ [4]. Therefore, only potential flows are obtained.

Theorem 2.2. There is at most one viscosity solution to (5) (respectively, to (6)) on Eg := {p: S(p) < oo} (resp. [0, T] x Ep).
If F(r) < cr for some ¢ > 0, then f(po) = sup{[;° e~ S 'h(p) — L(p, p))ds: p(-) € C(10,00); P2(RY)), p(0) = po}

(resp. U(t, po) := sup{g(p(t)) — [y L(p(s). p($))ds: p(0) = po. p() € C([0,00): Pa(RY))}) is such a solution. Moreover, if
| [ra F(p(x))dx| < £(S(p)) for some sub-linear ¢, then the existence-uniqueness and continuity of solution above can be extended to

Py (RY).

In the case of V =0, Theorem 2.2 also follows from results in [3,2]. A version of Theorem 2.1 also appears in mean-field
game theory [5] using a different formulation (at individual particle level).
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