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We note that even if convexity of the potential U fails locally, overdamped Langevin
diffusions in R

d are contractions w.r.t. the Kantorovich–Rubinstein-Wasserstein distance
based on an appropriately chosen concave distance function equivalent to the Euclidean
distance. The choice of the distance function is then optimized to obtain a large exponential
decay rate. The results yield dimension-independent bounds of optimal order in R, L ∈
[0,∞) and K ∈ (0,∞) if (x − y) · (∇U (x) − ∇U (y)) is bounded from below by −L|x − y|2
for |x − y| < R and by K |x − y|2 for |x − y| � R .

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On considére diffusions de Langevin sur R
d dans un potentiel U non convex dans un

ensemble borné. A l’aide du couplage de réflection, on observe que ces diffusions sont
des contractions pour la distance de Kantorovich–Rubinstein–Wasserstein basée sur une
distance concave appropriée, équivalente à la distance Euclidienne. Le choix de la distance
est optimisé pour obtenir un grand taux de décroissance exponentielle. Les résultats
impliquent bornes optimales pour R, L ∈ [0,∞) et K ∈ (0,∞), indépendamment de la
dimension, sous la condition que (x − y) · (∇U (x) − ∇U (y)) est borné inférieurement par
−L|x − y|2 pour |x − y| < R et par K |x − y|2 pour |x − y| � R .

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Consider a diffusion process (Xt)t�0 in R
d defined by a stochastic differential equation

dXt = b(Xt)dt + σ dBt . (1)

Here (Bt)t�0 is a d-dimensional Brownian motion, σ ∈ R
d×d is a constant d × d matrix with detσ > 0, and b : R

d → R
d is a

locally Lipschitz continuous function. We assume that the unique strong solution of (1) is non-explosive, which is essentially
a consequence of the assumptions imposed further below. The transition kernels of the diffusion process on R

d defined by
(1) will be denoted by pt(x,dy). We are interested in upper bounds for Kantorovich–Rubinstein–Wasserstein distances of
the distributions μpt and νpt at a given time t � 0 w.r.t. two different initial distributions μ and ν .
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Example 1 (Overdamped Langevin dynamics). Suppose σ = Id and b(x) = − 1
2 ∇U (x) for a function U ∈ C2(Rd) that is

strictly convex (i.e. ∇2U � K · Id for some K > 0) outside a given ball B ⊂ R
d . Then Z := ∫

exp(−U (x))dx < ∞, and
dμ := Z−1 exp(−U )dx is a stationary distribution for the diffusion process (Xt). The results below imply upper bounds
for the L1 Wasserstein distances between the law νpt of Xt and μ for an arbitrary initial distribution ν and t � 0.

A coupling by reflection of two solutions of (1) with initial distributions μ and ν is a diffusion process (Xt , Yt) with values
in R

2d defined by (X0, Y0) ∼ η where η is a coupling of μ and ν ,

dXt = b(Xt)dt + σ dBt for t � 0,

dYt = b(Yt)dt + σ
(

I − 2ete�
t

)
dBt for t < T , Yt = Xt for t � T . (2)

Here ete�
t is the orthogonal projection onto the unit vector et := σ−1(Xt − Yt)/|σ−1(Xt − Yt)|, and T = inf{t � 0: Xt = Yt}

is the coupling time, i.e., the first hitting time of the diagonal � = {(x, y) ∈ R
2d: x = y}, cf. [5,1]. The reflection coupling

can be realized as a diffusion process in R
2d , and the marginal processes (Xt)t�0 and (Yt)t�0 are solutions of (1) w.r.t. the

Brownian motions Bt and B̃t = ∫ t
0 (Id − 2I{s<T }ese�

s )dBs . The difference vector Zt := Xt − Yt solves the s.d.e.

dZt = (
b(Xt) − b(Yt)

)
dt + 2|σ−1 Zt |−1 Zt dWt for t < T , Zt = 0 for t � T , (3)

w.r.t. the one-dimensional Brownian motion Wt = ∫ t
0 e�

s dBs .
Lindvall and Rogers [5] introduced coupling by reflection in order to derive upper bounds for the total variation distance

of the distributions of Xt and Yt at a given time t � 0. Here we are instead considering the Kantorovich–Rubinstein (L1-
Wasserstein) distances

W f (μ,ν) = inf
η

∫
d f (x, y)η(dx dy), d f (x, y) = f

(‖x − y‖) (
x, y ∈ R

d), (4)

of probability measures μ,ν on R
d , where the infimum is over all couplings η of μ and ν , f : [0,∞) → [0,∞) is an

appropriately chosen concave increasing function with f (0) = 0, and ‖z‖ = √
z · Gz with G ∈ R

d×d symmetric and strictly
positive definite. Typical choices for the norm are the Euclidean norm ‖z‖ = |z| and the intrinsic metric ‖z‖ = |σ−1z|
corresponding to G = Id and G = (σσ�)−1 respectively.

2. Results

Similarly to Lindvall and Rogers [5], we define for r ∈ (0,∞):

κ(r) = inf

{
−2

|σ−1(x − y)|2
‖x − y‖2

(x − y) · G(b(x) − b(y))

‖x − y‖2
: x, y ∈ R

d with ‖x − y‖ = r

}
.

Note that the factor |σ−1(x − y)|2/‖x − y‖2 equals 1 if ‖ · ‖ is the intrinsic metric. In Example 1 with G = Id , we have
κ(r) = inf{∫ 1

0 ∂2
(x−y)/|x−y|U ((1 − t)x+ ty)dt: x, y ∈ R

d s.t. |x− y| = r}. We assume from now on that lim infr→∞ κ(r) > 0, and
we define constants R0, R1 ∈ [0,∞) with R0 � R1 by

R0 = inf
{

R � 0: κ(r) � 0 ∀r � R
}
, R1 = inf

{
R � R0: κ(r)R(R − R0) � 8 ∀r � R

}
.

We consider the particular distance function d f (x, y) = f (‖x − y‖) given by

f (r) =
r∫

0

ϕ(s)g(s)ds, ϕ(r) = exp

(
−1

4

r∫
0

sκ(s)− ds

)
, g(r) = 1 − 1

2

r∧R1∫
0

Φ(s)

ϕ(s)
ds

/ R1∫
0

Φ(s)

ϕ(s)
ds, (5)

where Φ(r) = ∫ r
0 ϕ(s)ds. Note that Φ and f are concave, because ϕ and g are decreasing. Moreover, Φ(r)/2 � f (r) � Φ(r)

for any r � 0. Hence d f and dΦ as well as W f and WΦ differ at most by a factor 2. The choice of f is obtained by trying
to maximize the decay rate of W f , cf. the proof below.

Theorem 1. Let α := sup{|σ−1z|2: z ∈ R
d with ‖z‖ = 1}, and define c ∈ (0,∞) by

1

c
= α

R1∫
0

Φ(s)ϕ(s)−1 ds = α

R1∫
0

s∫
0

exp

(
1

4

s∫
t

uκ(u)− du

)
dt ds. (6)

Then for d f given by (4) and (5), the function t 
→ ect
E[d f (Xt , Yt)] is decreasing on [0,∞).
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The theorem yields exponential contractivity at rate c > 0 for the transition kernels pt of (1) w.r.t. the Kantorovich–
Rubinstein–Wasserstein distance W f . Moreover, it implies upper bounds for the standard KRW distance W = W id w.r.t. the
distance function d(x, y) = ‖x − y‖:

Corollary 2.1. For any t � 0 and any probability measures μ,ν on R
d,

W f (μpt , νpt) � e−ct W f (μ,ν), and W (μpt, νpt) � 2ϕ(R0)
−1e−ct W (μ,ν). (7)

The second estimate follows from the first, because ϕ(R0)‖x − y‖/2 � d f (x, y) � ‖x − y‖ for any x, y ∈ R
d . For the

Wasserstein mixing times, the corollary yields the upper bound

τW (ε) := inf
{

t � 0: W (μpt, νpt) � εW (μ,ν) ∀μ,ν
}

� c−1 log
(
2/

(
εϕ(R0)

))
for any ε > 0.

Proof of Theorem 1. Let rt = ‖Zt‖ = ‖Xt − Yt‖. By (3) and Itô’s formula,

d f (rt) = 2
∣∣σ−1 Zt

∣∣−1
rt f ′(rt)dWt + r−1

t Zt · G
(
b(Xt) − b(Yt)

)
f ′(rt)dt + 2

∣∣σ−1 Zt
∣∣−2

r2
t f ′′(rt)dt (8)

a.s. for t < T . The drift is bounded from above by βt := 2|σ−1 Zt |−2r2
t ( f ′′(rt) − rtκ(rt) f ′(rt)/4). We show that by our choice

of f , this expression is smaller than −cf (rt). Indeed, for r < R1,

f ′′(r) = −1

4
rκ(r)−ϕ(r)g(r) − 1

2
Φ(r)

/ R1∫
0

Φ(s)

ϕ(s)
ds � 1

4
rκ(r) f ′(r) − 1

2
f (r)

/ R1∫
0

Φ(s)

ϕ(s)
ds. (9)

For r � R1, we have f ′(r) = ϕ(r)/2 = ϕ(R0)/2 and κ(r)R1(R1 − R0) � 8 by definition of R1, whence

f ′′(r) − 1

4
rκ(r) f ′(r) � −1

8
rκ(r)ϕ(R0) � − ϕ(R0)

R1 − R0
· r

R1
� − ϕ(R0)

R1 − R0
· Φ(r)

Φ(R1)

� −1

2
Φ(r)

/ R1∫
R0

Φ(s)ϕ(s)−1 ds � −1

2
f (r)

/ R1∫
0

Φ(s)ϕ(s)−1 ds. (10)

Here we have used that for r � R0, we have ϕ(r) = ϕ(R0),Φ(r) = Φ(R0) + (r − R0)ϕ(R0), and hence

R1∫
R0

Φ(s)ϕ(s)−1 ds =
R1∫

R0

(
Φ(R0) + (s − R0)ϕ(R0)

)
ϕ(R0)

−1 ds = Φ(R0)

ϕ(R0)
(R1 − R0) + 1

2
(R1 − R0)

2

� (R1 − R0)
(
Φ(R0) + (R1 − R0)ϕ(R0)

)
ϕ(R0)

−1/2 � (R1 − R0)Φ(R1)ϕ(R0)
−1/2.

By (9) and (10), we conclude that βt � −cf (rt). Optional stopping in (8) at Tk = inf{t � 0: rt /∈ (k−1,k)} now implies
E[ f (rt); t < Tk] � −c

∫ t
0 E[ f (rs); s < Tk]ds for any k ∈ N and t � 0. The assertion follows for k → ∞ since rt = 0 for t � T ,

and T = sup Tk by non-explosiveness. �
A first application. To illustrate that the bounds derived above are fairly sharp, let us suppose that κ(r) � −L for r � R and
κ(r) � K for r > R with constants R, L ∈ [0,∞) and K ∈ (0,∞). Then, since ϕ(r) = ϕ(R0) and Φ(r) = Φ(R0)+ (r − R0)ϕ(R0)

for r � R0,

α−1c−1 =
R1∫

0

Φ(s)ϕ(s)−1 ds =
R0∫

0

Φ(s)ϕ(s)−1 ds + (R1 − R0)Φ(R0)ϕ(R0)
−1 + (R1 − R0)

2/2. (11)

The lower bounds on the function κ imply the upper bounds R0 � R , R1 − R0 � min(8/(K R0),
√

8/K ), Φ(r)ϕ(r)−1 �∫ r
0 exp(L(r2 − t2)/8)dt � min(

√
2π/L, r)exp(Lr2/8) for r � R0, and

R0∫
0

Φ(r)ϕ(r)−1 dr �
{

4L−1(exp(LR2
0/8) − 1) � (e − 1)R2

0/2 if LR2
0/8 � 1,

8
√

2π L−3/2 R−1
0 exp(LR2

0/8) if LR2
0/8 � 1.

Combining these estimates, we obtain by (11),
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α−1c−1 �
{

(e − 1)R2/2 + e
√

8/K R + 4/K � (3e/2)max(R2,8/K ) if LR2
0/8 � 1,

8
√

2π R−1L−1/2(L−1 + K −1)exp(LR2/8) + 32R−2 K −2 if LR2
0/8 � 1.

In the first case, c is at least of order min(R−2, K ). Even if L = 0 (convex case), this order can not be improved as
one-dimensional Langevin diffusions with potential U (x) = K x2/2, or, respectively, with vanishing drift on (−R/2, R/2)

demonstrate. In the second case (LR2
0 � 8), if K � const. · L then the upper bound for c−1 is of order R−1L−3/2 exp(LR2/8).

This order in R and L is again optimal:

Example 2 (Double-well with U ′′(x) = −L for |x| � R/2). Consider a Langevin diffusion in R
1 with a symmetric potential

U ∈ C2(R) satisfying U (x) = −Lx2/2 for x ∈ [−R/2, R/2], U ′′ � −L, and lim inf|x|→∞ U ′′(x) > 0. If ‖ · ‖ is the Euclidean norm
then κ(r) = −L for r ∈ (0, R]. On the other hand,

lim
t→∞ t−1 log P R/2[T0 > t] = −λ1(0,∞) � −(2e − 2)−1(eL)3/2 R exp

(−LR2/8
)

for LR2 � 4, (12)

where T0 denotes the first hitting time of 0 for the process starting at R/2, and λ1(0,∞) is the lowest Dirichlet eigenvalue
of the generator on (0,∞), cf. [3]. The bound for λ1 follows by inserting the function g(x) = min(

√
Lx,1) into the variational

characterization of the Dirichlet eigenvalue. By (12), the L1 Wasserstein distance W (δ−R/2 pt , δR/2 pt) decays at most with a
rate of order L3/2 R exp(−LR2/8).

Remark. The idea to study Wasserstein contractivity w.r.t. concave distance functions goes back to Chen and Wang [2],
where it is implicitly contained in the proofs. Indeed, in [2] and [6], Chen and Wang apply very similar methods to estimate
spectral gaps of diffusion generators on R

d and on manifolds. Related arguments have also been applied in [4] to quantify
exponential ergodicity in infinite dimensional situations. The techniques presented have natural extensions to non-constant
diffusion coefficients and diffusions on manifolds, Euler discretizations of s.d.e., and high and infinite dimensional diffusions
(dimension-independent bounds) that will be studied in detail in forthcoming work.
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