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We construct infinitely many admissible weak solutions to the incompressible Euler equa-
tions with initial data given by the classical vortex sheet. The construction is based on the
method introduced recently in De Lellis and Székelyhidi Jr. (2009, 2010) [2,3] using con-
vex integration. In particular, the vorticity is not a bounded measure. Instead, the energy
decreases in time due to a linearly expanding turbulent zone around the vortex sheet.

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Nous construisons une infinité de solutions faibles admissibles des équations d’Euler in-
compressibles avec nappes de tourbillons classiques pour données initiales. La construction
repose sur la méthode introduite récemment dans De Lellis et Székelyhidi Jr. (2009, 2010)
[2,3] faisant appel à l’intégration convexe. En particulier, la vorticité n’est pas une mesure
bornée. Au lieu de cela, l’énergie décroît en temps, à cause d’une zone turbulente, entou-
rant la nappe de tourbillon et augmentant linéairement en temps.

© 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

In [2,3] an approach towards the construction of weak solutions of the incompressible Euler equations was introduced,
based on convex integration and Baire category arguments, in order to recover the celebrated non-uniqueness results of
Scheffer [6] and Shnirelman [7]. Furthermore, a strategy, based on the notion of subsolution, was introduced, which can be
used to construct weak solutions to the initial value problem with several additional properties. In particular this strategy
was recently used by E. Wiedemann to give a general global existence (and non-uniqueness) result for weak solutions [9].

On the other hand it is well known that weak solutions of the incompressible Euler equations satisfy the so-called weak-
strong uniqueness property. This can be stated as follows. We call a weak solution admissible if it satisfies the weak energy
inequality∫ ∣∣v(x, t)

∣∣2
dx �

∫ ∣∣v0(x)
∣∣2

dx for a.e. t � 0,
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where v0 is the initial data. If there exists a (strong) solution w to the same initial data v0 such that
∫ T

0 ‖∇w +∇wt‖L∞ dt <

∞, then w is unique in the class of weak admissible solutions. See [5,1] for details. The apparent contradiction of this
statement with the global non-uniqueness result of Wiedemann is resolved, since those weak solutions are in general not
admissible. On the other hand admissibility by itself does not imply uniqueness, as was shown in [3]. In other words there
exist initial data v0, for which there exist infinitely many distinct admissible weak solutions. Such initial data are called wild
initial data in [3]. Subsequently, in [8] it was proved that the set of wild initial data is dense in solenoidal L2 vector-fields
with respect to the strong L2 topology.

Obviously, wild initial data have to possess a certain amount of irregularity. This follows from the weak-strong uniqueness
and classical local existence results. From the construction of wild initial data in [3,8] it is not clear how bad this irregularity
needs to be. In this short note we show that the classical vortex-sheet with a flat interface is a wild initial data. More
precisely, we fix the domain to be the n-dimensional torus T

n with side length 1 and v0 to be the periodic extension of

v0(x) =
{

e1 if xn ∈ (0, 1
2 ),

−e1 if xn ∈ (− 1
2 ,0).

(1)

In other words let v0(x) := s(t)e1, where s(t) = sign(sin(2πt)).

Theorem 1.1. There exist infinitely many admissible weak solutions v ∈ L∞(Tn × (0,∞)) with initial data v0 . Infinitely many among
these satisfy the energy equality, and infinitely many have strictly decreasing energy in time.

In two dimensions weak solutions to vortex sheet initial data, i.e. v0 with

curlv0 ∈ M+
(
T

2) ∩ H−1(
T

2), (2)

where M+ stands for non-negative Radon measures of finite mass, have been constructed in the celebrated paper [4] by
Delort. By the very construction (passing to the weak limit from smooth solutions of Euler), the solutions of Delort are
admissible. There is a fundamental difference, however, between the solutions of Theorem 1.1 and the solutions of Delort:
even though v0 in (1) satisfies (2), in general curl v will not be a bounded measure for any positive time t > 0, due to
high-frequency oscillations in the velocity v on a set of positive Lebesgue measure.

In order to prove the theorem we recall the following result from [3]. To start with, recall the definition of subsolution.
To this end let us fix a non-negative function ē ∈ L1

loc(T
n × (0, T )).

Definition 1.2 (Subsolutions). A subsolution to the incompressible Euler equations with respect to the kinetic energy density
ē is a triple (v̄, ū, q̄) : T

n × (0, T ) → R
n × S n×n

0 × R with v̄ ∈ L2
loc, ū ∈ L1

loc, q̄ ∈ D′ , such that{
∂t v̄ + div ū + ∇q̄ = 0

div v̄ = 0,
in the sense of distributions; (3)

and

v̄ ⊗ v̄ − ū � 2

n
ēI a.e. (4)

Here S n×n
0 denotes the set of symmetric traceless n × n matrices and I is the identity matrix. Observe that subsolutions

automatically satisfy 1
2 |v̄|2 � ē a.e. If in addition (4) is an equality a.e. then v̄ is a weak solution of the Euler equations.

Theorem 1.3. (See Proposition 2 in [3].) Let (v̄, ū, q̄) be a subsolution with respect to ē on T
n × (0, T ). Assume that U ⊂ T

n × (0, T )

is an open subset such that (v̄, ū, q̄) and ē are continuous on U and

v ⊗ v − u <
2

n
e on U . (5)

Then there exist infinitely many (ṽ, ũ) ∈ L∞
loc(T

n × R) with ṽ ∈ C(R; L2
weak(T

n)) such that (ṽ, ũ,0) satisfies (3), (ṽ, ũ) = 0 a.e. in U c ,
and

(v̄ + ṽ) ⊗ (v̄ + ṽ) − (ū + ũ) = 2

n
ē I a.e. in U . (6)

In particular, if v := v̄ + ṽ in the above theorem, then v satisfies the incompressible Euler equations in the space–time
region U with pressure p, where

1 |v|2 = ē, p = q̄ − 2
ē. (7)
2 n
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In other words, if the subsolution is a continuous, strict subsolution in some subregion, then it is possible (in a highly
non-unique way) to add a perturbation so that the sum is a solution of the Euler equations with prescribed kinetic energy
density. This theorem is essentially the content of Proposition 2 in [3] with an almost identical proof, except that in the
proof one needs to perform the covering inside the region U rather than in all of space–time. Theorem 1.3 leads to the
following criterion for wild initial data.

Theorem 1.4. Let v0 ∈ L2(Tn) with div v0 = 0. Assume that there exists T > 0 and ē ∈ C([0, T ]; L1(Tn)) with∫
ē(x, t)dx �

∫
1

2

∣∣v0(x)
∣∣2

dx for all t � 0

and there exists a subsolution (v̄, ū, q̄) with respect to ē on T
n × [0, T ] with

v̄ ∈ C
([0, T ]; L2

weak

(
T

n)), v̄(0) = v0.

Furthermore, assume that there exists an open set U ⊂ T
n × (0, T ) such that (v̄, ū, q̄) and ē are continuous on U and

v̄ ⊗ v̄ − ū <
2

n
ēI in U ,

v̄ ⊗ v̄ − ū = 2

n
ēI a.e. U c. (8)

Then there exist infinitely many admissible weak solutions to the incompressible Euler equations on T
n × (0, T ) with initial data v0 .

2. Proof of Theorem 1.1

Let us consider for simplicity the case n = 2, the higher-dimensional case can be dealt with analogously. We wish to
apply Theorem 1.4 to v0 given in (1). To this end we set

v̄ := (α,0), ū :=
(

β γ
γ −β

)
, q̄ := β

where α = α(x2, t), β = β(x2, t) and γ = γ (x2, t) are functions still to be fixed. With these choices the system (3) reduces
to

∂tα + ∂x2γ = 0. (9)

Next, for some λ ∈ (0,1) we set β := 1
2 α2 and γ := − λ

2 (1 −α2). With this choice (9) becomes the inviscid Burgers equation
∂tα + λ

2 ∂x2α
2 = 0, with (1-periodic) initial data given by α(x2,0) = s(x2). Set α to be the (unique) viscosity solution, given

by a rarefaction wave with speed λ at x2 = 0 and constant shocks at x2 = ± 1
2 up to time T = 1

2λ
, i.e. the 1-periodic extension

of x2 �→ α(x2, t) given by

α(x2, t) :=

⎧⎪⎨
⎪⎩

−1 − 1
2 < x2 < −λt,

x2
λt −λt < x2 < λt,

1 λt < x2 < 1
2 ,

if t < 1
2λ

, (10)

and α(x2, t) := x2
λt for x2 ∈ (− 1

2 , 1
2 ) and t � 1

2λ
. In particular, we have |α| � 1 for all (x, t) and {|α| < 1} = U := {(x, t): |x2| <

λt}. Therefore, in order to verify (8) it suffices to set

ē := 1

2
− ε

1 − λ

2

(
1 − α2) (11)

for some ε ∈ [0,1). With this choice of U and ē the triple (v̄, ū, q̄) satisfies (8) for all time. Therefore, with Theorem 1.4 we
conclude the proof.

Remarks. Observe that initially the maximal expansion rate of the turbulent zone U is linear with speed given by |v0| = 1,
and is achieved when λ → 1. Using (7) we also note that the pressure corresponding to the solutions constructed is – up to
a constant – given by p = 1

2 (1 − α2). In particular the pressure gradient is concentrated in the turbulent zone. The kinetic
energy is given by E(t) = ∫

ē dx. Using (10) and (11) we find the dissipation rate to be

dE

dt
= −2

3
ελ(1 − λ). (12)

In particular the dissipation rate is maximized when ε → 1 and λ = 1/2.
Finally we note that as t → ∞, the subsolutions constructed in the proof converge to zero. This corresponds to the fully

mixed, isotropic state of the fluid.
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