

# Contents lists available at SciVerse ScienceDirect

# C. R. Acad. Sci. Paris, Ser. I



www.sciencedirect.com

Probability Theory

# Harmonic moments and large deviations for a supercritical branching process in a random environment

Moments harmoniques et grandes déviations pour un processus de branchement sur-critique dans un environnement aléatoire

Chunmao Huang<sup>a,b</sup>, Quansheng Liu<sup>a,b</sup>

<sup>a</sup> Université de Bretagne-Sud, LMAM, campus de Tohannic, BP 573, 56017 Vannes, France <sup>b</sup> Université Européenne de Bretagne, France

#### ARTICLE INFO

Article history: Received 29 July 2011 Accepted 3 October 2011 Available online 22 October 2011

Presented by the Editorial Board

## ABSTRACT

Let  $(Z_n)$  be a supercritical branching process in a random environment  $\xi$ , and W be the limit of the normalized population size  $Z_n/\mathbb{E}[Z_n|\xi]$ . We show large and moderate deviation principles for the sequence  $\log Z_n$  (with appropriate normalization) by finding an equivalence of the moments of  $Z_n$  and a criterion for the existence of harmonic moments of W.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Soient  $(Z_n)$  un processus de branchement sur-critique dans un environnement aléatoire  $\xi$ , et W la limite de la population normalisée  $Z_n/\mathbb{E}[Z_n]\xi]$ . Nous montrons les principes de grande déviation et de déviation modérée pour la suite log  $Z_n$  en trouvant un équivalent des moments de  $Z_n$  et un critère pour l'existence des moments harmoniques de W. © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## 1. Introduction and results

Let  $\xi = (\xi_0, \xi_1, \xi_2, ...)$  be a sequence of independent and identically distributed (i.i.d.) random variables taking values in some space  $\Theta$ , whose realization determines a sequence of probability generating functions

$$f_n(s) = f_{\xi_n}(s) = \sum_{i=0}^{\infty} p_i(\xi_n) s^i, \quad s \in [0, 1], \qquad p_i(\xi_n) \ge 0, \qquad \sum_{i=0}^{\infty} p_i(\xi_n) = 1.$$

A branching process  $(Z_n)_{n \ge 0}$  in the random environment  $\xi$  can be defined as follows:

$$Z_0 = 1,$$
  $Z_{n+1} = \sum_{i=1}^{Z_n} X_{n,i}$   $(n \ge 0),$ 

where given the environment  $\xi$ ,  $X_{n,i}$  (i = 1, 2, ...) are independent of each other and independent of  $Z_n$ , and have the same distribution determined by  $f_n$ .

E-mail addresses: sasamao02@gmail.com (C. Huang), quansheng.liu@univ-ubs.fr (Q. Liu).

<sup>1631-073</sup>X/\$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2011.10.001

Let  $(\Gamma, \mathbb{P}_{\xi})$  be the probability space under which the process is defined when the environment  $\xi$  is given. As usual,  $\mathbb{P}_{\xi}$  is called quenched law. The total probability space can be formulated as the product space  $(\Gamma \times \Theta^{\mathbb{N}}, \mathbb{P})$ , where  $\mathbb{P} = \mathbb{P}_{\xi} \otimes \tau$ , and  $\tau$  is the law of the environment  $\xi$ . The total probability  $\mathbb{P}$  is usually called annealed law. The quenched law  $\mathbb{P}_{\xi}$  can be considered to be the conditional probability of the annealed law  $\mathbb{P}$  given  $\xi$ . The expectation with respect to  $\mathbb{P}_{\xi}$  (resp.  $\mathbb{P}$ ) will be denoted by  $\mathbb{E}_{\xi}$  (resp.  $\mathbb{E}$ ).

For  $n \ge 0$ , define

$$m_n = m(\xi_n) = \sum_{i=0}^{\infty} i p_i(\xi_n), \quad \Pi_0 = 1 \text{ and } \Pi_n = m_0 \cdots m_{n-1} \text{ if } n \ge 1.$$

It is well known that the normalized population size  $W_n = Z_n/\Pi_n$  is a nonnegative martingale under  $\mathbb{P}_{\xi}$  (for each  $\xi$ ) with respect to the filtration  $\mathcal{F}_n = \sigma(\xi, X_{k,i}, 0 \le k \le n-1, i = 1, 2, ...)$ , so that the limit  $W = \lim W_n$  exists almost sure (a.s.) with  $\mathbb{E}W \le 1$ .

We consider the supercritical case where  $\mathbb{E}\log m_0 \in (0,\infty)$  and  $\mathbb{E}\frac{Z_1}{m_0}\log^+ Z_1 < \infty$ . For simplicity, we write  $p_i := p_i(\xi_0)$  and assume that  $p_0 = 0$  a.s., so that W > 0 and  $Z_n \to \infty$  a.s.

It is known that  $\frac{\log Z_n}{n} \to \mathbb{E}\log m_0$  a.s. (cf. e.g. [7]). We are interested in the convergence rate of the corresponding deviation probabilities. We shall show that  $\log Z_n$  and  $\log \Pi_n$  satisfy the same large and moderate deviation principles under suitable conditions.

We first consider large deviations. Let  $\Lambda(t) = \log \mathbb{E}m_0^t < \infty$  for all  $t \in \mathbb{R}$  and  $\Lambda^*(x) = \sup_{t \in \mathbb{R}} \{xt - \Lambda(t)\}$  be the Fenchel–Legendre transform of  $\Lambda$ . We introduce the following assumption:

(*H*) There exist constants  $\delta > 0$  and  $A > A_1 > 1$  such that a.s.  $A_1 \leq m_0$ ,  $m_0(1 + \delta) \leq A^{1+\delta}$ , where  $m_0 = \sum_{i=0}^{\infty} i p_i(\xi_0)$  and  $m_0(1 + \delta) = \sum_{i=0}^{\infty} i^{1+\delta} p_i(\xi_0)$ .

Notice that  $m_0 = \mathbb{E}_{\xi} Z_1$ ,  $m_0(1 + \delta) = \mathbb{E}_{\xi} Z_1^{1+\delta}$  and that the above condition implies that  $m_0 \leq A$  a.s. The theorem below shows that  $\log Z_n$  and  $\log \Pi_n$  satisfy the same large deviation principle:

**Theorem 1.1** (Large deviation principle). Assume (H). If  $\mathbb{E}Z_1^s < \infty$  for all s > 1 and  $p_1 = 0$  a.s., then for any measurable subset B of  $\mathbb{R}$ ,

$$-\inf_{x\in B^{o}}\Lambda^{*}(x)\leqslant\liminf_{n\to\infty}\frac{1}{n}\log\mathbb{P}\left(\frac{\log Z_{n}}{n}\in B\right)\leqslant\limsup_{n\to\infty}\frac{1}{n}\log\mathbb{P}\left(\frac{\log Z_{n}}{n}\in B\right)\leqslant-\inf_{x\in\bar{B}}\Lambda^{*}(x),$$

where  $B^{o}$  denotes the interior of B, and  $\overline{B}$  its closure.

**Corollary 1.2.** Assume (H). If  $\mathbb{E}Z_1^s < \infty$  for all s > 1 and  $p_1 = 0$  a.s., then

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}\left(\frac{\log Z_n}{n} \leqslant x\right) = -\Lambda^*(x) \quad \text{for } x < \mathbb{E} \log m_0,$$
$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}\left(\frac{\log Z_n}{n} \geqslant x\right) = -\Lambda^*(x) \quad \text{for } x > \mathbb{E} \log m_0.$$

This result was proved by Bansaye and Berestycki (2009, [1]) when (*H*) holds with  $\delta = 1$ . As shown in [1], if  $\mathbb{P}(p_1 > 0) > 0$ , the rate function for the large deviation is no longer  $\Lambda^*$ .

Notice that the Laplace transform of  $\log Z_n$  is  $\mathbb{E}e^{t \log Z_n} = \mathbb{E}Z_n^t$ . Therefore, Theorem 1.1 is a consequence of the Gärtner-Ellis theorem (see [2, p. 52, Exercise 2.3.20]) and Theorem 1.3 below:

**Theorem 1.3** (Moments of  $Z_n$ ). Let  $t \in \mathbb{R}$ . Suppose that one of the following conditions is satisfied:

(i)  $t \in (0, 1]$  and  $\mathbb{E}m_0^{t-1}Z_1 \log^+ Z_1 < \infty$ ; (ii) t > 1 and  $\mathbb{E}Z_1^t < \infty$ ; (iii) t < 0,  $\mathbb{E}p_1 < \mathbb{E}m_0^t$ ,  $\|p_1\|_{\infty} := \text{esssup } p_1 < 1$  and (H) holds.

Then as  $n \to \infty$ ,  $\mathbb{E}Z_n^t / (\mathbb{E}m_0^t)^n \to C(t)$  for some constant  $C(t) \in (0, \infty)$ .

For t < 0, Theorem 1.3 is an extension of a result of Ney and Vidyashankar [6] on the Galton–Watson process.

A key step in the proof of Theorem 1.3 is the study of the moments of *W*. For the moments of positive orders, Guivarc'h and Liu [3] showed that for p > 1,  $\mathbb{E}W^p \in (0, \infty)$  if and only if  $\mathbb{E}(Z_1/m_0)^p < \infty \& \mathbb{E}m_0^{1-p} < 1$ . For the moments of negative orders, we have the following criterion:

**Theorem 1.4** (Harmonic moments of W). Assume (H). Then there exists a constant a > 0 such that  $\mathbb{E}W^{-a} < \infty$ . If additionally  $\|p_1\|_{\infty} < 1$ , then for a > 0,  $\mathbb{E}W^{-a} < \infty$  if and only if  $\mathbb{E}p_1 m_0^a < 1$ .

Theorem 1.4 reveals that under certain conditions, the number  $a_0 > 0$  satisfying  $\mathbb{E}p_1 m_0^{a_0} = 1$  is the critical value for the existence of the annealed harmonic moments  $\mathbb{E}W^{-a}(a > 0)$ . Hambly [4] proved that under an assumption similar to (*H*), the number  $\alpha_0 := -\frac{\mathbb{E}\log p_1}{\mathbb{E}\log m_0}$  is the critical value for the a.s. existence of the quenched moments  $\mathbb{E}_{\xi}W^{-a}(a > 0)$ . By Jensen's inequality, we see that  $a_0 \leq \alpha_0$ .

We then show that  $\log Z_n$  and  $\log \Pi_n$  also satisfy the same moderate deviation principle.

**Theorem 1.5** (Moderate deviation principle). Assume (H) and let  $\sigma^2 = var(\log m_0) \in (0, \infty)$ . Let  $(a_n)$  be a sequence of positive numbers satisfying  $\frac{a_n}{n} \to 0$  and  $\frac{a_n}{\sqrt{n}} \to \infty$ . Then for any measurable subset B of  $\mathbb{R}$ ,

$$-\inf_{x\in B^{o}}\frac{x^{2}}{2\sigma^{2}} \leqslant \liminf_{n\to\infty}\frac{n}{a_{n}^{2}}\log\mathbb{P}\left(\frac{\log Z_{n}-n\mathbb{E}\log m_{0}}{a_{n}}\in B\right)$$
$$\leqslant \limsup_{n\to\infty}\frac{n}{a_{n}^{2}}\log\mathbb{P}\left(\frac{\log Z_{n}-n\mathbb{E}\log m_{0}}{a_{n}}\in B\right)\leqslant -\inf_{x\in\bar{B}}\frac{x^{2}}{2\sigma^{2}},$$

where  $B^{o}$  denotes the interior of *B*, and  $\overline{B}$  its closure.

#### 2. Sketch of proofs

To prove the results about the harmonic moments of *W*, we consider the Laplace transform of *W*. Set  $\phi_{\xi}(t) = \mathbb{E}_{\xi} e^{-tW}$ and  $\phi(t) = \mathbb{E}\phi_{\xi}(t)$  for t > 0. The following lemma gives uniform upper bounds for  $\phi_{\xi}(t)$ :

**Lemma 2.1.** Assume (H). Then there exist constants  $\beta \in (0, 1)$  and K > 0 such that a.s.  $\phi_{\xi}(t) \leq \beta$  for all  $t \geq 1/K$ . If additionally  $\|p_1\|_{\infty} < 1$ , then for some constants a > 0 and C > 0, we have a.s.  $\phi_{\xi}(t) \leq Ct^{-a}$  for all  $t \geq 1/K$ .

**Proof.** We obtain the upper bound  $\beta$  by an argument similar to [4, Proof of Lemma 3.1]. For the special case where  $||p_1||_{\infty} < 1$ , notice that  $\phi_{\xi}(t)$  satisfies the functional equation

$$\phi_{\xi}(t) = f_0(\phi_{T\xi}(t/m_0)), \tag{1}$$

where  $T^n \xi = (\xi_n, \xi_{n+1}, ...)$  if  $\xi = (\xi_0, \xi_1, ...)$  and  $n \ge 0$ . By iteration, we have a.s.

$$\phi_{\xi}(t) \leq \phi_{T^{n_{\xi}}}(t/\Pi_n) \prod_{j=0}^{n-1} (p_1(\xi_j) + (1-p_1(\xi_j))\phi_{T^{n_{\xi}}}(t/\Pi_n)).$$

Since  $\phi_{T^n\xi}(t/\Pi_n) \leq \beta$  for  $t \geq A^n/K$ , it follows that a.s.  $\phi_{\xi}(t) \leq \beta \alpha^n$  for  $t \geq A^n/K$ , where  $\alpha = \|p_1\|_{\infty} + (1 - \|p_1\|_{\infty})\beta \in (0, 1)$ . For  $t \geq 1/K$ , taking  $n_0 = \lfloor \frac{\log(Kt)}{\log A} \rfloor$  yields the upper bound  $Ct^{-a}$  for suitable a > 0 and C > 0.  $\Box$ 

**Proof of Theorem 1.4.** We first consider the special case where  $||p_1||_{\infty} < 1$ . For the necessity, notice that  $W = \frac{1}{m_0} \sum_{i=1}^{Z_1} W_i^{(1)}$ , where given  $\xi$ ,  $(W_i^{(1)})_{i \ge 1}$  are (conditionally) independent, each has the distribution  $\mathbb{P}_{\xi}(W_i^{(1)} \in \cdot) = \mathbb{P}_{T\xi}(W \in \cdot)$ . Since  $\mathbb{P}(Z_1 \ge 2) > 0$ , we have

$$\mathbb{E}W^{-a} > \mathbb{E}m_0^a (W_1^{(1)})^{-a} \mathbf{1}_{\{Z_1=1\}} = \mathbb{E}p_1 m_0^a \mathbb{E}W^{-a}.$$

Thus  $\mathbb{E}p_1m_0^a < 1$ . For the sufficiency, the upper bound  $Ct^{-a}$  in Lemma 2.1 implies that  $\forall \varepsilon > 0$ , there exists a constant  $t_{\varepsilon} > 0$  such that a.s.  $\phi_{\xi}(t) \leq \varepsilon$  for  $t \geq t_{\varepsilon}$ . Therefore, by (1), we have  $\phi_{\xi}(t) \leq (p_1 + (1 - p_1)\varepsilon)\phi_{T\xi}(t/m_0)$  for  $t \geq At_{\varepsilon}$ . Taking the expectation gives

$$\phi(t) \leq \mathbb{E}(p_1 + (1 - p_1)\varepsilon)\phi\left(\frac{t}{m_0}\right) = p_{\varepsilon}\mathbb{E}\phi(\tilde{A}_{\varepsilon}t),$$

where  $p_{\varepsilon} = \mathbb{E}(p_1 + (1 - p_1)\varepsilon) < 1$  and  $\tilde{A}_{\varepsilon}$  is a positive random variable whose distribution is determined by  $\mathbb{E}g(\tilde{A}_{\varepsilon}) = \frac{1}{p_{\varepsilon}}\mathbb{E}(p_1 + (1 - p_1)\varepsilon)g(\frac{1}{m_0})$  for all bounded and measurable function g. Since  $\mathbb{E}p_1m_0^a < 1$ , we can take  $a_1 > a$  and  $\varepsilon > 0$  small enough such that  $p_{\varepsilon}\mathbb{E}\tilde{A}_{\varepsilon}^{-a_1} < 1$ . Then by Lemma 3.2 of Liu (2001, [5]),  $\phi(t) = O(t^{-a_1})(t \to \infty)$ . Therefore  $\mathbb{E}W^{-a} < \infty$  (cf. e.g. [5, Lemma 3.3]).

Now consider the general case without the assumption  $||p_1||_{\infty} < 1$ . Notice that by Lemma 2.1, a.s.  $\phi_{\xi}(t) \leq \beta$  for all  $t \geq t_{\beta} = 1/K$ . It suffices to repeat the proof of sufficiency above with  $\beta$  in place of  $\varepsilon$ .  $\Box$ 

**Proof of Theorem 1.3.** Denote the distribution of  $\xi_0$  by  $\tau_0$ . Fix  $t \in \mathbb{R}$  and define a new distribution  $\tilde{\tau}_0$  as  $\tilde{\tau}_0(dx) = m(x)^t \tau_0(dx) / \mathbb{E}m_0^t$ , where  $m(x) = \mathbb{E}[Z_1|\xi_0 = x] = \sum_{i=0}^{\infty} ip_i(x)$ . Consider the new BPRE whose environment distribution is  $\tilde{\tau} = \tilde{\tau}_0^{\otimes \mathbb{N}}$  instead of  $\tau = \tau_0^{\otimes \mathbb{N}}$ . The corresponding total probability and expectation are denoted by  $\tilde{\mathbb{P}} = \mathbb{P}_{\xi} \otimes \tilde{\tau}$  and  $\tilde{\mathbb{E}}$ . Then  $\mathbb{E}Z_n^t / (\mathbb{E}m_0^t)^n = \tilde{\mathbb{E}}W_n^t$ . We distinguish three cases:  $t \in (0, 1), t > 1$  and t < 0. For each case, under the given moment conditions,  $\tilde{\mathbb{E}}W_n^t \to \tilde{\mathbb{E}}W^t \in (0, \infty)$ .  $\Box$ 

# Proof of Theorem 1.5. Let

$$\Lambda_n(t) = \log \mathbb{E} \exp\left(\frac{\log Z_n - n\mathbb{E}\log m_0}{a_n}t\right) \text{ and } \Gamma_n(t) = \log \mathbb{E} \exp\left(\frac{\log \Pi_n - n\mathbb{E}\log m_0}{a_n}t\right).$$

By the classic moderate deviation principle,  $\frac{n}{a_n^2}\Gamma_n(\frac{a_n^2}{n}t) \rightarrow \frac{1}{2}\sigma^2 t^2$ . Applying Jensen's inequality and Hölder's inequality, we can prove that  $\Lambda_n(\frac{a_n^2}{n}t)/\Gamma_n(\frac{a_n^2}{n}t) \rightarrow 1$  for all  $t \neq 0$ , so that  $\frac{n}{a_n^2}\Lambda_n(\frac{a_n^2}{n}t) \rightarrow \frac{1}{2}\sigma^2 t^2$ . This together with the Gärtner-Ellis theorem [2, p. 52, Exercise 2.3.20] implies the desired result.  $\Box$ 

#### Acknowledgements

The work has been partially supported by the National Natural Science Foundation of China, Grant No. 11101039 and Grant No. 11171044.

#### References

- [1] V. Bansaye, J. Berestycki, Large deviations for branching processes in random environment, Markov Process. Related Fields 15 (2009) 493-524.
- [2] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, Springer, New York, 1998.
- [3] Y. Guivarc'h, Q. Liu, Propriétés asymptotiques des processus de branchement en environnement aléatoire, C. R. Acad. Sci. Paris, Ser. I 332 (2001) 339-344.
- [4] B. Hambly, On the limit distribution of a supercritical branching process in a random environment, J. Appl. Probab. 29 (1992) 499–518.
- [5] Q. Liu, Asymptotic properties and absolute continuity of laws stable by random weighted mean, Stochastic Process. Appl. 95 (2001) 83–107.
- [6] P.E. Ney, A.N. Vidyashankar, Harmonic moments and large deviation rates for supercritical branching process, Ann. Appl. Probab. 13 (2003) 475-489.
- [7] D. Tanny, Limit theorems for branching processes in a random environment, Ann. Probab. 5 (1977) 100-116.