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We prove a Korn-type inequality in
◦
H(Curl;Ω,R

3×3) for tensor fields P mapping Ω to
R

3×3. More precisely, let Ω ⊂ R
3 be a bounded domain with connected Lipschitz boundary

∂Ω . Then, there exists a constant c > 0 such that

c‖P‖L2(Ω,R3×3) � ‖ sym P‖L2(Ω,R3×3) + ‖Curl P‖L2(Ω,R3×3) (1)

holds for all tensor fields P ∈ ◦
H(Curl;Ω,R

3×3), i.e., all P ∈ H(Curl;Ω,R
3×3) with vanishing

tangential trace on ∂Ω . Here, rotation and tangential traces are defined row-wise. For
compatible P , i.e., P = ∇v and thus Curl P = 0, where v ∈ H1(Ω,R

3) are vector fields
having components vn , for which ∇vn are normal at ∂Ω , the presented estimate (1)
reduces to a non-standard variant of Korn’s first inequality, i.e.,

c‖∇v‖L2(Ω,R3×3) � ‖ sym ∇v‖L2(Ω,R3×3).

On the other hand, for skew-symmetric P , i.e., sym P = 0, (1) reduces to a non-standard
version of Poincaré’s estimate. Therefore, since (1) admits the classical boundary conditions
our result is a common generalization of these two classical estimates, namely Poincaré’s
resp. Korn’s first inequality.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous démontrons une inégalité de type Korn dans
◦
H(Curl;Ω,R

3×3) pour des champs
tensoriels P appliquant Ω dans R

3×3. De façon plus précise, soit Ω un domaine borné
de R

3 dont la frontière ∂Ω est Lipschitz continue et connexe. Il existe alors une constante
c > 0, telle que

c‖P‖L2(Ω,R3×3) � ‖ sym P‖L2(Ω,R3×3) + ‖Curl P‖L2(Ω,R3×3) (1)

est vérifiée pour tous les champs tensoriels P ∈ ◦
H(Curl;Ω,R

3×3), i.e., pour tous les
P ∈ H(Curl;Ω,R

3×3) dont la trace tangentielle s’annule sur ∂Ω . Ici, rotation et trace
tangentielle sont définies ligne par ligne. Pour des champs P compatibles, i.e., P = ∇v ,
d’où Curl P = 0, avec v ∈ H1(Ω,R

3) et de composante vn , telle que ∇vn est normal à ∂Ω ,
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l’estimation (1) se réduit à

c‖∇v‖L2(Ω,R3×3) � ‖ sym ∇v‖L2(Ω,R3×3),

une variante non classique de la première inégalité de Korn. Par ailleurs, pour des P anti-
symétriques, (1) se réduit à une variante non classique de l’inégalité de Poincaré. Il en
résulte que puisque (1) est compatible avec les conditions aux limites classiques, cette
estimation généralise tout à la fois l’inégalité de Poincaré et la première inégalité de Korn.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The motivation for our new estimate is a formulation of infinitesimal gradient plasticity [2]. Our model is taken from
Neff et al. [6]. Let Ω ⊂ R

3 be a bounded domain. The goal is to find the displacement u : [0,∞)×Ω �→ R
3 and the possibly

non-symmetric plastic distortion tensor P : [0,∞) × Ω �→ R
3×3, such that in [0,∞) × Ω

Divσ = f , σ = 2μ sym(∇u − P ) + λ tr(∇u − P ) id, (2)

Ṗ ∈ Φ(Σ), Σ = σ − 2μ sym P − μL2
c Curl Curl P , (3)

hold. The system is completed by the boundary conditions

u(t, x) = 0, ν(x) × P (t, x) = 0 ∀(t, x) ∈ [0,∞) × ∂Ω (4)

and the initial condition P (0, x) = 0 for all x ∈ Ω . The underlying thermodynamic potential including the plastic gradients
in form of the dislocation density tensor Curl P is∫

Ω

μ
∣∣sym(∇u − P )

∣∣2 + λ

2

∣∣tr(∇u − P )
∣∣2 − f · u + μ| sym P |2 + μ

2
L2

c |Curl P |2.

Here, μ, λ are the elastic Lamé moduli and σ is the symmetric Cauchy stress tensor. The system is driven by nonzero
body forces denoted by f . The exterior normal to the boundary ∂Ω is denoted by ν and the plastic distortion P is re-
quired to satisfy row-wise the homogeneous tangential boundary condition which means that the boundary ∂Ω is a perfect
conductor regarding the plastic distortion.1

Moreover, Φ : R
3×3 �→ R

3×3 is the monotone, multivalued flow-function with Φ(0) = 0 and Φ(R3×3
sym ) ⊂ R

3×3
sym . In general,

Σ is not symmetric even if P is symmetric. Thus, the plastic inhomogeneity is responsible for the plastic spin (the possible
non-symmetry of P ). The mathematically suitable space for symmetric plastic distortion P is the classical space H(curl;Ω)

for each row of P [10,2]. This case appears when choosing Φ : R
3×3 �→ R

3×3
sym .

In the large scale limit Lc → 0 we recover a classical elasto-plasticity model with local kinematic hardening and sym-
metric plastic strain εp := sym P , since then Ṗ ∈ R

3×3
sym .

Uniqueness of classical solutions for rate-independent and rate-dependent formulations of this model is shown in [6].
The more difficult existence question for the rate-independent model in terms of a weak reformulation is addressed in
[6]. First numerical results for a simplified rate-independent irrotational formulation (no plastic spin, i.e., symmetric plastic
distortion P ) are presented in [10], cf. [15]. In [3] the model has been extended to rate-independent isotropic hardening
based on the concept of a dissipation function defined in terms of the equivalent plastic strain. From a modeling point
of view, it is strongly preferable to again have only the symmetric (rate) part of the plastic distortion P appear in the
dissipation potential.

The existence and uniqueness can be settled by recasting the model as a variational inequality, if it is possible to define
a bilinear form which is coercive with respect to appropriate spaces. This program has been achieved for other variants of
the model in [3]. It had to remain basically open for the above system (2)–(4). In this case, the appropriate space for the

plastic distortion P is the completion
◦
Hsym(Curl;Ω) of the linear space

{
P ∈ C∞(

Ω,R
3×3): Pn normal at ∂Ω, n = 1,2,3

}
with respect to the norm ||| · |||, where Pn are the columns of P T and

|||P |||2 := ‖ sym P‖2
L2(Ω)

+ ‖Curl P‖2
L2(Ω)

.

Despite first appearance, this quadratic form indeed defines a norm as shown in [6]. Thus
◦
Hsym(Curl;Ω) is a Hilbert-space.

However, in this space it is not immediately obvious how to define a linear and bounded tangential trace operator. Since only
‖ sym P‖L2(Ω) appears, it is also not clear, how to control the skew-symmetric part of P . Therefore, the crucial embedding

1 This homogeneous tangential boundary condition on P is consistent with ν × ∇u = 0 on ∂Ω which follows from u = 0 on ∂Ω .
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◦
Hsym(Curl;Ω) ⊂ L2(Ω)

is not clear as well. As a consequence of our main results of this note, i.e., Theorems 1 and 2, we obtain that nevertheless
and fortunately

◦
Hsym(Curl;Ω) = ◦

H(Curl;Ω)

holds with equivalent norms in case the domain Ω has a connected Lipschitz boundary.
The result of this note has been announced in [7] and is written down more detailed in [9]. A forthcoming paper [8] will

be devoted to the case Ω ⊂ R
N using differential forms.

For the proof of our main result (1), i.e., Theorems 1 and 2, we combine techniques from electro-magnetic and elastic
theory, namely the Helmholtz decomposition, the Maxwell or Poincaré/Friedrichs’ estimate and Korn’s first inequality. Their
basic variants are well known results which can be found in many books, e.g., in [4] and the literature cited there. More
sophisticated and related versions are presented, e.g., in [11–14,16] for Maxwell’s equations and [1,5] for Korn’s inequality.

2. Results

Let Ω be a bounded domain in R
3 with connected Lipschitz continuous boundary. We will denote the standard Sobolev

spaces by H(grad;Ω), H(div;Ω), H(curl;Ω) and introduce the differential operators Grad, Div, Curl as well as the corre-
sponding vector resp. tensor (matrix) field Sobolev spaces

H(Grad;Ω), H(Div;Ω), H(Curl;Ω)

canonically by row-wise operation of the usual differential operators grad, div, curl. Equipped with their natural graph
norms, these are Hilbert spaces. Furthermore, we define their closed subspaces

◦
H(Grad;Ω),

◦
H(Curl;Ω)

as completion (under the respective norms) of the vector resp. tensor valued space
◦
C ∞(Ω). An index 0 at the lower right

corner indicates the vanishing of the differential operator, i.e.,

H(Div0;Ω) := {
T ∈ H(Div;Ω): Div T = 0

}
.

For tensor fields T ∈ H(Curl;Ω) we define the semi-norm ||| · ||| by

|||T |||2 := ‖ sym T ‖2
L2(Ω)

+ ‖Curl T ‖2
L2(Ω)

.

Theorem 1. There exists a constant c > 0, such that for all T ∈ ◦
H(Curl;Ω)

‖T ‖L2(Ω) � c|||T |||.

Proof. Let T ∈ ◦
H(Curl;Ω). Applying row-wise the well-known (orthogonal) Helmholtz decomposition, we get

T = Grad v + S ∈ Grad
◦
H(Grad;Ω) ⊕ H(Div0;Ω).

Then, Curl T = Curl S and we observe S ∈ ◦
H(Curl;Ω) ∩ H(Div0;Ω) since

Grad
◦
H(Grad;Ω) ⊂ ◦

H(Curl0;Ω).

By Poincaré/Friedrichs’ estimate, there exists a constant cpf > 0 independent of S and T , such that

‖S‖L2(Ω) � cpf ‖Curl T ‖L2(Ω). (5)

Then, by Korn’s first inequality we obtain easily

‖T ‖2
L2(Ω)

= ‖Grad v‖2
L2(Ω)

+ ‖S‖2
L2(Ω)

� 2‖ sym Grad v‖2
L2(Ω)

+ ‖S‖2
L2(Ω)

� 4‖ sym T ‖2
L2(Ω)

+ 5‖S‖2
L2(Ω)

and (5) completes the proof. �
We note that c � max{2,

√
5cpf }. The immediate consequence is
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Theorem 2. On
◦
H(Curl;Ω) the norms ‖ · ‖H(Curl;Ω) and ||| · ||| are equivalent. In particular, ||| · ||| is a norm on

◦
H(Curl;Ω) and

∃c > 0 ∀T ∈ ◦
H(Curl;Ω) c‖T ‖H(Curl;Ω) � ‖ sym T ‖L2(Ω) + ‖Curl T ‖L2(Ω).

Finally we note that

Remark 3. The estimate in Theorem 1, i.e.,

‖T ‖L2(Ω) � c
(‖ sym T ‖2

L2(Ω)
+ ‖Curl T ‖2

L2(Ω)

)1/2
,

is a common formulation of Korn’s first and Poincaré’s inequality.

(i) If Curl T = 0, we obtain Korn’s first inequality. This, i.e.,

‖T ‖L2(Ω) � c‖ sym T ‖L2(Ω),

holds e.g. for tensor fields T ∈ ◦
H(Curl0;Ω) or T = Grad v with vector fields v ∈ ◦

H(Grad;Ω).

(ii) If sym T = 0, Poincaré’s inequality appears. For skew-symmetric tensor fields T ∈ ◦
H(Curl;Ω) we have

‖T ‖L2(Ω) � c‖Curl T ‖L2(Ω) � 2c‖∇T ‖L2(Ω).
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