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We prove the following conjecture due to Bryant Mathews (2008). Let Q be the orthogonal
grassmannian of totally isotropic i-planes of a non-degenerate quadratic form q over an
arbitrary field (where i is an integer satisfying 1 � i � (dim q)/2). If the degree of each
closed point on Q is divisible by 2i and the Witt index of q over the function field of Q is
equal to i, then the variety Q is 2-incompressible.
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r é s u m é

Nous démontrons la conjecture ci-dessous due à Bryant Mathews (2008). Soit Q la
grassmannienne orthogonale des i-plans totalement isotropes d’une forme quadratique non
dégénérée q sur un corps arbitraire (où i est un entier satisfaisant 1 � i � (dim q)/2). Si
le degré de tout point fermé sur Q est divisible par 2i et l’indice de Witt de la forme q
au-dessus du corps des fonctions de Q est égal à i, alors la variété Q est 2-incompressible.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Theorem 7, proved below, has been conjectured in the PhD thesis [13, p. 24] (a preprint with the conjecture appeared
one year earlier).

We start with some development of the theory of canonical dimension of general projective homogeneous varieties
(which might be of independent interest). We fix a prime p. Let G be a semisimple affine algebraic group over a field
F such that G E is of inner type for some finite Galois field extension E/F of degree a power of p (E = F is allowed).
Let X be a projective G-homogeneous F -variety. We refer to [5] for a definition and discussion of the notion of canonical
p-dimension cdimp X of X . Actually, canonical p-dimension is defined in the context of more general algebraic varieties.
For any irreducible smooth projective variety X , cdimp X is the minimal dimension of a closed subvariety Y ⊂ X with
a 0-cycle of p-coprime degree on Y F (X) . Recall that a smooth projective X is p-incompressible, if it is irreducible and
cdimp X = dim X .

Proposition 1. For d := cdimp X, there exist a cycle class α ∈ CHd X F (X) (over F (X)) of codimension d and a cycle class β ∈ CHd X
(over F ) of dimension d such that the degree of the product βF (X) · α is not divisible by p.

Proof. We use Chow motives with coefficients in Fp := Z/pZ (as defined in [3, Chapter XII]) and write Ch for the Chow
group CH modulo p.
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Let U (X) be the upper motive of X . By definition, U (X) is a direct summand of the motive M(X) of X such that
Ch0 U (X) �= 0. By [5, Theorem 5.1 and Proposition 5.2], U (X) is also a direct summand of M(X)(d − m), where m := dim X .
The composition

M(X) → U (X) → M(X)(d − m)

is given by a correspondence f ∈ Chd(X × X); the composition

M(X)(d − m) → U (X) → M(X)

is given by a correspondence g ∈ Chd(X × X). The composition of correspondences g ◦ f ∈ Chm(X × X) is a projector on X
such that U (X) = (X, g ◦ f ). In particular, the multiplicity mult(g ◦ f ) of the correspondence g ◦ f is 1 ∈ Fp . Taking for α an
integral representative of the pull-back of f with respect to the morphism

Spec F (X) × X → X × X

induced by the generic point of the first factor, and taking for β an integral representative of the push-forward of g with
respect to the projection of X × X onto the first factor, we get that

deg(βF (X) · α) (mod p) = mult(g ◦ f ) = 1 ∈ Fp . �
Corollary 2. The canonical p-dimension cdimp X of X is the minimal integer d such that there exist a cycle class α ∈ Chd X F (X) and a
cycle class β ∈ Chd X with deg(βF (X) · α) = 1 ∈ Fp .

Proof. We only need to show that cdimp X � d. The proof is similar to [11, Proof of � in Theorem 5.8]. Since deg(βF (X) ·
α) = 1 ∈ Fp for some β ∈ Chd X (and some α), there exists a closed irreducible d-dimensional subvariety Y ⊂ X such that
deg([Y ]F (X) ·α) �= 0 ∈ Fp (with the same α). Since the product [Y ]F (X) ·α can be represented by a cycle on Y F (X) , the variety
Y F (X) has a 0-cycle of p-coprime degree. Therefore cdimp X � dim Y = d. �
Corollary 3. In the situation of Proposition 1, for any field extension L/F , the change of field homomorphism Chd X → Chd XL is
non-zero.

Proof. The image of β ∈ Chd X in Chd XL is non-zero because deg(βL(X) · αL(X)) = 1. �
Remark 4. If the variety X is generically split (meaning that the motive of X F (X) is a sum of Tate motives which, in particular,
implies that the adjoint algebraic group acting on X is of inner type), then [11, Theorem 5.8] says that cdimp X is the
minimal d with non-zero Chd X → Chd XL for any L. Corollary 3 can be considered as a generalisation of a part of [11,
Theorem 5.8] to the case of a projective G-homogeneous variety X which is not necessarily generically split with G not
necessarily of inner type. Note that the statement of [11, Theorem 5.8] in whole fails in such generality. Corollary 2 is its
correct replacement (giving the original statement in the case of generically split X ).

Lemma 5. In the situation of Proposition 1, let α,α′ ∈ Chd X F (X) and β,β ′ ∈ Chd X be cycle classes with deg(βF (X) · α) = 1 =
deg(β ′

F (X) · α′). Then

deg
(
βF (X) · α′) �= 0 �= deg

(
β ′

F (X) · α)
.

Proof. We fix an algebraically closed field containing F (X) and write ·̄ when considering a variety or a cycle class over that
field. The surjectivity of the pull-back with respect to the flat morphism Spec F (X) × X → X × X induced by the generic
point of the first factor of the product X × X , tells us that the group Chd( X̄ × X̄) contains a rational (i.e., “coming from F ”)
cycle class of the form [ X̄] × ᾱ + · · · + γ̄ × [ X̄] with some γ ∈ Chd X F (X) , where · · · is in the sum of products Chi X̄ ⊗ Ch j X̄
with 0 < i, j < d and i + j = d. Multiplying by [ X̄] × β̄ , we get a rational cycle class of the form [ X̄] × [pt] + · · · + γ̄ × β̄ ,
where pt is a rational point on X̄ and · · · is now in the sum of Chi X̄ ⊗Chi X̄ with 0 < i < d. The composition of the obtained
correspondence with itself equals [ X̄] × [pt] + · · · + deg(γ · β)(γ̄ × β̄). Since an appropriate power of this correspondence
is a multiplicity 1 projector (cf. [9, Corollary 3.2] or [7]) and d = cdimp X , it follows by [5, Theorem 5.1] that deg(γ · β) �= 0.
Now multiplying [ X̄] × ᾱ + · · · + γ̄ × [ X̄] by β̄ × [ X̄], transposing, and raising to (p − 1)th power (by means of composition
of correspondences), we get a rational cycle of the form [ X̄] × [pt] + · · · + ᾱ × β̄ .

Similarly, there is a rational cycle of the form [ X̄] × [pt] + · · · + ᾱ′ × β̄ ′ . One of its compositions with the previous one
produces [ X̄] × [pt] + · · · + deg(β ′ · α)(ᾱ′ × β̄), therefore deg(β ′ · α) �= 0 ∈ Fp . The other composition produces [ X̄] × [pt] +
· · · + deg(β · α′)(ᾱ × β̄ ′), so that deg(β · α′) �= 0. �

We specify as follows the settings of Proposition 1. The prime p is now 2. The algebraic group G is now O+(q) (in
notation of [12, §23]) for a non-degenerate quadratic form q (one may take E = F if dim q is odd or disc q is trivial,
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otherwise E can be the quadratic field extension of F given by the discriminant of q). We set n := dim q. For any integer
i with 0 � i � n/2, let Q i be the variety of i-dimensional totally isotropic subspaces in q. In particular, Q 0 = Spec F . For i
with 0 < i < n/2, Q i is a projective G-homogeneous variety.

Corollary 6. If cdim2 Q i = cdim2 Q ′
i−1 = dim Q ′

i−1 for some i with 0 < i < n/2, where Q ′
i−1 is the orthogonal grassmannian of

totally isotropic (i − 1) planes of an (n − 2)-dimensional quadratic form q′ over F (Q 1) Witt-equivalent to qF (Q 1) , then deg CH Q i 	
2i−1 .

Proof. The statement being trivial for i = 1, we may assume that i � 2.
For d := cdim2 Q i , using Proposition 1, we choose some α ∈ CHd Q i F (Q i) and β ∈ CHd Q i with odd deg(βF (Q i) · α).

Note that cdim2 Q i F (Q 1) = cdim2 Q ′
i−1 = d. We construct some special α′ ∈ CHd Q i F (Q 1)(Q i) and β ′ ∈ CHd Q i F (Q 1) with

deg(β ′
F (Q 1)(Q i)

·α′) = 1 as follows. Let Q 1⊂i be the variety of (1, i)-flags of totally isotropic subspaces in q together with the
evident projections Q 1⊂i → Q 1, Q i . We define β ′ as the pull-back via Q 1⊂i F (Q 1) → Q 1 F (Q 1) followed by the push-forward
via Q 1⊂i F (Q 1) → Q i F (Q 1) of the rational point class l0 on Q 1 F (Q 1) . We define α′ as the product zi−1 . . . z1, where z j is the
pull-back via Q 1⊂i F (Q 1)(Q i) → Q 1 F (Q 1)(Q i) followed by the push-forward via Q 1⊂i F (Q 1)(Q i) → Q i F (Q 1)(Q i) of the class l j of
a j-dimensional projective subspace on Q 1 F (Q 1)(Q i) . The degree condition on α′ and β ′ is satisfied by [15, Statement 2.15].
Fixing an algebraically closed field containing F (Q 1)(Q i), we see by Lemma 5 that the product β̄ · ᾱ′ is an odd degree
0-cycle class on Q̄ i . Moreover, the class β̄ is rational. Since 2z̄ j is rational for every j < (n − 2)/2 (by the reason that 2l j is
rational), the class 2i−1β̄ᾱ is also rational and it follows that 2i−1 ∈ deg CH Q i . �

We come to the main result of this note. It is known for i = 1 by [4] (the proof is essentially contained already in [14];
the characteristic 2 case has been treated later on in [3]). The case of maximal i, i.e., of i = [n/2], is also known and is
discussed in the beginning of the proof. For i = 2 and odd-dimensional q, it has been proved in [13] (the proof for i = 2
given here is different; in particular, it does not make use of the motivic decompositions of [2] for products of projective
homogeneous varieties).

Theorem 7. Let q be a non-degenerate quadratic form over a field F . Let i be an integer satisfying 1 � i � (dim q)/2. If the degree
of every closed point on Q i is divisible by 2i and the Witt index of the quadratic form qF (Q i) equals i, then the variety Q i is 2-
incompressible (i.e., cdim2 Q i = dim Q i ).

Proof. We set n := dim q. Note that for i = n/2 (and even n) the condition on closed points on Q n/2 ensures that disc q is
non-trivial. In particular, Q n/2 is irreducible.

In general, for even n, the variety Q n/2 is isomorphic to the orthogonal grassmannian of totally isotropic (n/2 − 1)-planes
of q1 considered as a variety over F , where q1 is any 1-codimensional non-degenerate subform in qK , and K is the quadratic
étale F -algebra given by the discriminant of q. Therefore the statement of Theorem 7 for i = n/2 follows from the statement
for i = (n − 1)/2. By this reason, we do not consider the case of i = n/2 below. In particular, Q i below is a projective
G-homogeneous variety.

We induct on n. There is nothing to prove for n < 3. Below we are assuming that n � 3.
Over the field F (Q 1), the motive of Q i F (Q 1) decomposes as follows (cf. [6,8] or [1]):

M
(

Q ′
i−1

) ⊕ M
(

Q ′
i

)((
dim Q i − dim Q ′

i

)
/2

) ⊕ M
(

Q ′
i−1

)(
dim Q i − dim Q ′

i−1

)
,

where, as in Corollary 6, Q ′
j is the variety of j-dimensional totally isotropic subspaces of a quadratic form q′ over the field

F (Q 1) such that qF (Q 1) is isomorphic to the orthogonal sum of q′ and a hyperbolic plane. Since n′ := dim q′ = n − 2 < n,
the variety Q ′

i−1 is 2-incompressible by the induction hypothesis (more precisely, the induction hypothesis is applied if
i � 2, for i = 1 the statement if trivial). Indeed, since the extension F (Q 1)/F is a tower of a purely transcendental extension
followed by a quadratic one, the degree of any closed point on Q ′

i−1 is divisible by 2i−1; the Witt index of q′
F (Q 1)(Q ′

i−1)
is

i −1, that is, the Witt index of qF (Q 1)(Q ′
i−1) is i because the field extension F (Q 1)(Q ′

i−1)(Q i)/F (Q i) is purely transcendental.

By [10, Theorem 1.1] (cf. [6]), it follows that the motive of Q ′
i−1 decomposes in a direct sum of one copy of U (Q ′

i−1),
shifts of U (Q ′

j) with various j � i, and (in the case of even n and non-trivial disc q) shifts of U (Q ′
j K ) with j � i − 1

(where K/F is the quadratic field extension corresponding to disc q). The motive of Q ′
i decomposes in a direct sum of shifts

of U (Q ′
j) and (in the case of even n and non-trivial disc q) shifts of U (Q ′

j K ) with various j � i. Note that the condition
on the Witt index of the form qF (Q i) ensures that for any j � i the motive U (Q ′

i−1) is not isomorphic to U (Q ′
j) (and

U (Q ′
i−1) �� U (Q ′

j K ) anyway). Therefore the complete motivic decomposition of Q i F (Q 1) contains one copy of U (Q ′
i−1), one

copy of U (Q ′
i−1)(dim Q i − dim Q ′

i−1) and no other shifts of U (Q ′
i−1).

The complete decomposition of U (Q i)F (Q 1) contains the summand U (Q ′
i−1). If it also contains the second (shifted) copy

of U (Q ′
i−1), then cdim2 Q i = dim Q i by [5, Theorem 5.1], and we are done. Otherwise, by [6, Lemma 1.2 and Remark 1.3],

cdim2 Q i = cdim2 Q ′
i−1 = dim Q ′

i−1, and we get by Corollary 6 that Q i has a closed point of degree not divisible by 2i . �
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