Combinatorics

An upper bound on the 2-outer-independent domination number of a tree

Borne supérieure sur le nombre de 2-domination extérieurement-indépendante d'un arbre

Marcin Krzywkowski
Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

A R TICLE I N F O

Article history:
Received 9 December 2010
Accepted after revision 3 October 2011
Available online 24 October 2011
Presented by the Editorial Board

Abstract

A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of $V(G) \backslash D$ has at least two neighbors in D, and the set $V(G) \backslash D$ is independent. The 2 -outer-independent domination number of a graph G, denoted by $\gamma_{2}^{o i}(G)$, is the minimum cardinality of a 2 -outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have $\gamma_{2}^{o i}(T) \leqslant(n+l) / 2$, and we characterize the trees attaining this upper bound. © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É

Un ensemble 2-dominant extérieurement-indépendant d'un graphe G est un ensemble D de sommets de G tel que chaque sommet de $V(G) \backslash D$ a au moins deux voisins dans D, et l'ensemble $V(G) \backslash D$ est indépendant. Le nombre de 2-domination extérieurementindépendante d'un graphe G, noté par $\gamma_{2}^{o i}(G)$, est le cardinal minimum d'un ensemble 2 -dominant extérieurement-indépendant de G. Nous prouvons l'inégalité $\gamma_{2}^{o i}(T) \leqslant(n+l) / 2$ pour tout arbre non trivial T d'ordre n avec l feuilles, et nous caractérisons les arbres atteignant cette borne supérieure.
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let $G=(V, E)$ be a graph. By the neighborhood of a vertex v of G we mean the set $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$. The degree of a vertex v, denoted by $d_{G}(v)$, is the cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. We say that a support vertex is strong (weak, respectively) if it is adjacent to at least two leaves (exactly one leaf, respectively). By G^{*} we denote the graph obtained from G by removing all leaves. The path on n vertices we denote by P_{n}.

We say that a subset of $V(G)$ is independent if there is no edge between any two vertices of this set. The independence number of a graph G, denoted by $\alpha(G)$, is the maximum cardinality of an independent subset of $V(G)$. An independent subset of the set of vertices of G of maximum cardinality is called an $\alpha(G)$-set.

[^0]A subset $D \subseteq V(G)$ is a dominating set of G if every vertex of $V(G) \backslash D$ has a neighbor in D, while it is a 2-dominating set of G if every vertex of $V(G) \backslash D$ has at least two neighbors in D. The domination (2-domination, respectively) number of a graph G, denoted by $\gamma(G)\left(\gamma_{2}(G)\right.$, respectively), is the minimum cardinality of a dominating (2-dominating, respectively) set of G. Note that 2-domination is a type of multiple domination in which each vertex, which is not in the dominating set, is dominated at least k times for a fixed positive integer k. Multiple domination was introduced by Fink and Jacobson [3], and further studied for example in [1,2,4,5,8,10]. For a comprehensive survey of domination in graphs, see [6,7].

A subset $D \subseteq V(G)$ is a 2-outer-independent dominating set, abbreviated 2OIDS, of G if every vertex of $V(G) \backslash D$ has at least two neighbors in D, and the set $V(G) \backslash D$ is independent. The 2-outer-independent domination number of G, denoted by $\gamma_{2}^{o i}(G)$, is the minimum cardinality of a 2 -outer-independent dominating set of G. A 2 -outer-independent dominating set of G of minimum cardinality is called a $\gamma_{2}^{o i}(G)$-set. The study of 2 -outer-independent domination in graphs was initiated in [9].

Blidia, Chellali, and Favaron [1] established the following upper bound on the 2-domination number of a tree. For every nontrivial tree T of order n with l leaves we have $\gamma_{2}(T) \leqslant(n+l) / 2$. They also characterized the extremal trees.

We prove the following upper bound on the 2 -outer-independent domination number of a tree. For every nontrivial tree T of order n with l leaves we have $\gamma_{2}^{o i}(T) \leqslant(n+l) / 2$. We also characterize the trees attaining this upper bound.

2. Results

We begin with the following straightforward observation:
Observation 1. Every leaf of a graph G is in every $\gamma_{2}^{o i}(G)$-set.
We have the following relation between the 2-outer-independent domination number of a graph without isolated vertices and the independence number of the graph obtained from it by removing all leaves:

Lemma 2. If G is a graph without isolated vertices, then $\gamma_{2}^{o i}(G)=n-\alpha\left(G^{*}\right)$.
Proof. Let D be any $\gamma_{2}^{o i}(G)$-set. By Observation 1, all leaves belong to the set D. Therefore $V(G) \backslash D \subseteq V\left(G^{*}\right)$. The set $V(G) \backslash D$ is independent, thus $\alpha\left(G^{*}\right) \geqslant|V(G) \backslash D|=n-\gamma_{2}^{o i}(G)$. Now let D^{*} be any $\alpha\left(G^{*}\right)$-set. Let us observe that in the graph G every vertex of D^{*} has at least two neighbors in the set $V(G) \backslash D^{*}$. Therefore $\gamma_{2}^{0 i}(G) \leqslant\left|V(G) \backslash D^{*}\right|=n-\alpha\left(G^{*}\right)$. This implies that $\gamma_{2}^{o i}(G)=n-\alpha\left(G^{*}\right)$.

Now we get an upper bound on the 2-outer-independent domination number of bipartite graphs without isolated vertices.

Lemma 3. For every bipartite graph G without isolated vertices of order n with l leaves we have $\gamma_{2}^{o i}(G) \leqslant(n+l) / 2$.
Proof. Observe that the graph G^{*} is also bipartite. Thus there is an independent subset of the set of its vertices which contains at least half of them. Therefore $\alpha\left(G^{*}\right) \geqslant\left|V\left(G^{*}\right)\right| / 2=(n-l) / 2$. Using Lemma 2 we get $\gamma_{2}^{o i}(G)=n-\alpha\left(G^{*}\right) \leqslant$ $n-(n-l) / 2=(n+l) / 2$.

By $\mathcal{I}_{\text {max }}$ we denote the family of trees whose 2-outer-independent domination number attains the upper bound from the previous lemma.

We have the following property of trees of the family $\mathcal{T}_{\max }$.
Lemma 4. Let T be a tree. We have $T \in \mathcal{T}_{\max }$ if and only if $\alpha\left(T^{*}\right)=n^{*} / 2$.
Proof. If T is a tree of the family $\mathcal{T}_{\max }$, that is $\gamma_{2}^{o i}(T)=(n+l) / 2$, then using Lemma 2 we get $\alpha\left(T^{*}\right)=n-\gamma_{2}^{o i}(T)=$ $n-(n+l) / 2=(n-l) / 2=n^{*} / 2$. The converse implication can be proven similarly.

We showed that if G is a bipartite graph without isolated vertices of order n with l leaves, then $\gamma_{2}^{o i}(G)$ is bounded above by $(n+l) / 2$. We characterize all trees attaining this bound. For this purpose we introduce a family \mathcal{T} of trees that can be obtained from P_{2} by applying consecutively operations \mathcal{O}_{1} or \mathcal{O}_{2} defined below.

- Operation \mathcal{O}_{1} : Add one new vertex and one edge joining this new vertex to a non-leaf vertex of a graph.
- Operation \mathcal{O}_{2} : Add two new vertices, one edge joining them, and one edge joining one of them to a leaf of a graph.

Now we prove that for every tree of the family \mathcal{T}, the 2 -outer-independent domination number equals the number of leaves plus half of the remaining vertices.

Lemma 5. Any tree $T \in \mathcal{T}$ is in $\mathcal{T}_{\text {max }}$.
Proof. We have $\gamma_{2}^{o i}\left(P_{2}\right)=2=(2+2) / 2=(n+l) / 2$, thus $P_{2} \in \mathcal{T}_{\text {max }}$. Therefore the result is true for the starting tree. It remains to show that performing the operations \mathcal{O}_{1} and \mathcal{O}_{2} keeps the property of being in $\mathcal{T}_{\text {max }}$. Let T be a tree obtained from $T^{\prime} \in \mathcal{T}$ by operation \mathcal{O}_{1}. We have $T^{*}=T^{* *}$. If $T^{\prime} \in \mathcal{T}_{\max }$, then Lemma 4 implies that $T \in \mathcal{T}_{\text {max }}$. Now let T be a tree obtained from $T^{\prime} \in \mathcal{T}$ by operation \mathcal{O}_{2}. We have $n^{*}=n^{\prime *}+2$. Let us observe that $\alpha\left(T^{*}\right)=\alpha\left(T^{\prime *}\right)+1$. If $T^{\prime} \in \mathcal{T}_{\max }$, then using Lemma 4 we get $\alpha\left(T^{*}\right)=\alpha\left(T^{\prime *}\right)+1=n^{* *} / 2+1=\left(n^{*}+2\right) / 2=n^{*} / 2$. By Lemma 4 we have $T \in \mathcal{T}_{\max }$.

Now we prove that if the 2-outer-independent domination number of a tree equals the number of leaves plus half of the remaining vertices, then the tree belongs to the family \mathcal{T}.

Lemma 6. Any tree $T \in \mathcal{T}_{\text {max }}$ is in \mathcal{T}.
Proof. We prove the result by the induction on the number n of vertices of T. If it has only two vertices, then $T=P_{2} \in \mathcal{T}$. Now assume that $n \geqslant 3$. Assume that the result is true for every tree T^{\prime} of order $n^{\prime}<n$.

Assume that some support vertex of T, say x, has degree at least three. Let y be a leaf adjacent to x. Let $T^{\prime}=T-y$. We have $T^{\prime *}=T^{*}$. Lemma 4 implies that $T^{\prime} \in \mathcal{T}_{\max }$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{1}. Thus $T \in \mathcal{T}$. Henceforth, we can assume that every support vertex of T has degree two.

We now root T at a vertex r of maximum eccentricity. Let t be a leaf at maximum distance from r, v be the parent of t, and u be the parent of v in the rooted tree. By T_{x} let us denote the subtree induced by a vertex x and its descendants in the rooted tree T.

First assume that $d_{T}(u) \geqslant 3$. Let x be a descendant of u other than v. Since every support vertex of T has degree two, the vertex x is not a leaf. Thus it is a support vertex. Let $T^{\prime}=T-T_{v}$. Let us observe that $n^{\prime *}=n^{*}-1$ and $\alpha\left(T^{\prime *}\right)=\alpha\left(T^{*}\right)-1$. Using Lemma 4 we get $\alpha\left(T^{* *}\right)=\alpha\left(T^{*}\right)-1=n^{*} / 2-1=\left(n^{*}+1\right) / 2-1=n^{*} / 2-1 / 2<n^{\prime *} / 2$. This is a contradiction as T^{*} is bipartite graph.

Now assume that $d_{T}(u)=2$. Let $T^{\prime}=T-T_{v}$. Let us observe that $n^{*}=n^{*}-2$ and $\alpha\left(T^{\prime *}\right)=\alpha\left(T^{*}\right)-1$. Now we get $\alpha\left(T^{*}\right)=\alpha\left(T^{*}\right)-1=n^{*} / 2-1=\left(n^{*}-2\right) / 2=n^{*} / 2$. Lemma 4 implies that $T^{\prime} \in \mathcal{T}_{\max }$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{2}. Thus $T \in \mathcal{T}$.

As a consequence of Lemmas 3, 5 and 6 we get the final result, an upper bound on the 2 -outer-independent domination number of a tree together with the characterization of the extremal trees.

Theorem 7. If T is a nontrivial tree of order n with l leaves, then $\gamma_{2}^{o i}(T) \leqslant(n+l) / 2$ with equality if and only if $T \in \mathcal{T}$.

Acknowledgements

Thanks are due to the anonymous referee for comments that helped to improve the presentation of the results.

References

[1] M. Blidia, M. Chellali, O. Favaron, Independence and 2-domination in trees, Australasian Journal of Combinatorics 33 (2005) 317-327.
[2] M. Blidia, O. Favaron, R. Lounes, Locating-domination, 2-domination and independence in trees, Australasian Journal of Combinatorics 42 (2008) 309316.
[3] J. Fink, M. Jacobson, n-Domination in graphs, in: Graph Theory with Applications to Algorithms and Computer Science, Wiley, New York, 1985, pp. 282300.
[4] J. Fujisawa, A. Hansberg, T. Kubo, A. Saito, M. Sugita, L. Volkmann, Independence and 2-domination in bipartite graphs, Australasian Journal of Combinatorics 40 (2008) 265-268.
[5] A. Hansberg, L. Volkmann, On graphs with equal domination and 2-domination numbers, Discrete Mathematics 308 (2008) $2277-2281$.
[6] T. Haynes, S. Hedetniemi, P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[7] T. Haynes, S. Hedetniemi, P. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[8] Y. Jiao, H. Yu, On graphs with equal 2-domination and connected 2-domination numbers, Mathematica Applicata Yingyong Shuxue 17 (suppl.) (2004) 88-92.
[9] M. Krzywkowski, 2-outer-independent domination in graphs, submitted for publication.
[10] R. Shaheen, Bounds for the 2-domination number of toroidal grid graphs, International Journal of Computer Mathematics 86 (2009) $584-588$.

[^0]: E-mail address: marcin.krzywkowski@gmail.com.
 1631-073X/\$ - see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2011.10.005

