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We establish that when n � 2 and H ∈ C1(Rn) is a Hamiltonian such that some level
set contains a line segment, the Aronsson equation D2u : H p(Du) ⊗ H p(Du) = 0 admits
explicit entire viscosity solutions. They are superpositions of a linear part plus a Lipschitz
continuous singular part which in general is non-C1 and nowhere twice differentiable. In
particular, we supplement the C1 regularity result of Wang and Yu (2008) [11] by deducing
that strict level convexity is necessary for C1 regularity of solutions.
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r é s u m é

Nous démontrons que, pour n � 2 et un Hamiltonien H ∈ C1(Rn) tel qu’au moins une
de ses lignes de niveau contienne un segment de droite, l’équation de Aronsson D2u :
H p(Du) ⊗ H p(Du) = 0 admet des solutions de viscosité explicites définies sur R

n . Elles
sont superpositions d’une partie linéaire et d’une partie continue, lipschitzienne, singulière
qui, en général, n’est pas C1 et est nulle part deux fois dérivable. Plus précisément, nous
complétons le résultat de régularité établit par Wang et Yu (2008) [11] en montrant que la
stricte convexité des lignes de niveau est nécessaire pour que les solutions soient C1.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let H ∈ C1(Rn) be a Hamiltonian function and n � 2. We discuss aspects of the C1 regularity problem of viscosity
solutions to the Aronsson equation, which is defined on smooth u ∈ C2(Rn) by

A[u] := D2u : H p(Du) ⊗ H p(Du) = 0. (1)

Here, A[u] is understood as
∑n

i, j=1 D2
i juH pi (Du)H p j (Du) and H pi = D pi H . Formula (1) defines a quasilinear highly degen-

erate elliptic PDE. It arises in L∞ variational problems of the supremal functional E∞(u,Ω) := ‖H(Du)‖L∞(Ω) , as well as in
other contexts (Barron, Evans, and Jensen [3]). When H(p) = 1

2 |p|2, (1) reduces to the ∞-Laplacian:

�∞u := D2u : Du ⊗ Du = 0. (2)

Under reasonable convexity, coercivity and regularity assumptions on H , there exists a unique continuous solution of the
Dirichlet problem with Lipschitz boundary data, interpreted in the viscosity sense of Crandall, Ishii, and Lions [4]. Moreover,
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any continuous viscosity solution to (1) is actually Lipschitz continuous and can be characterized by means of comparison
(Gariepy, Wang, and Yu [8]). The C1 regularity problem for (1) however remains open. Wang and Yu [11] established that
when n = 2, H is in C2(R2) with H � H(0) = 0 and it is uniformly convex on the plane (i.e. there exists a > 0 such that
H pp � aI), then continuous viscosity solutions of (1) over Ω ⊆ R

2 are in C1(Ω). When n > 2, viscosity solutions are linearly
approximatable at all scales in the sense of De Pauw and Koeller [5], having approximate gradients. In the special case of
�∞ and when n = 2, solutions are C1+α (Savin [10], Evans and Savin [6]). Recently, Evans and Smart established everywhere
differentiability of ∞-harmonic functions [7].

Herein we prove that when a level set {H = c} of H contains a straight line segment, there exists an entire viscosity
solution of (1) given as superposition of a linear term plus a rather arbitrary Lipschitz continuous term. The latter may not
be C1; moreover, it may well be nowhere twice differentiable with Hessian realized only as singular distribution and not as
Radon measure, as we show by examples.

We note that our only assumption is H being constant along a line segment but arbitrary otherwise. This suffices for
these solutions to appear. Actually, they arise as almost everywhere solutions of the Hamilton–Jacobi equation

H(Du) = c. (3)

In order to keep the proof self-contained and direct, we work with the second order PDE (1) ignoring the relation between
viscosity solutions of (1) and differentiable solutions of (3). We just notice that in the classical C2 context, the identity

D2u : H p(Du) ⊗ H p(Du) = H p(Du) · D
(

H(Du)
)

(4)

suffices to imply A[u] = 0, whenever H(Du) = c. Let us now state our result.

Theorem 1. We assume that H ∈ C1(Rn), n � 2, and there exists a straight line segment [a,b] ⊆ R
n along which H is constant. Then,

for any f ∈ W 1,∞
loc (R) satisfying ‖ f ′‖L∞(R) < 1, the formula

u(x) := b + a

2
· x + f

(
b − a

2
· x

)
, x ∈ R

n, (5)

defines an entire viscosity solution u ∈ W 1,∞
loc (Rn) of the Aronsson equation.

We deduce that the existence of the non-C1 solutions (5) implies the following

Corollary 2. Strict level convexity of the Hamiltonian H is necessary to obtain C1 regularity of viscosity solutions to the Aronsson PDE
in all dimensions n � 2.

In particular, the uniform convexity assumption of Wang and Yu [11] cannot be relaxed to mere convexity, unless if strict
level convexity is additionally assumed.

We observe that C1 regularity of solutions is not an issue of regularity of H ; the singular solutions (5) persist even when
H ∈ C∞(Rn). Such solutions do not arise in the case of the Infinity-Laplacian. The most singular Infinity-Harmonic functions
known are strong solutions as well having Hessians a.e. (Aronsson [1,2]). The sensitive dependence of regularity on the
convexity of H is a result of the geometric degeneracy structure of the PDE A[u] = 0 which in view of (4) can be rewritten
as the perpendicularity condition H p(Du) ⊥ D(H(Du)). Also, the singular solutions persist for arbitrarily small straight line
segments, as long as the segments do not trivialize to a point.

2. Proofs

For the definition and the properties of viscosity solutions we refer to Crandall, Ishii, and Lions [4]. We will first prove
Theorem 1 for smooth functions f and then deduce the full result by approximation. See also Fig. 1.

Lemma 3. Let u be given by (5) with f ∈ C2(R) satisfying ‖ f ′‖L∞(R) < 1. Then,

(i) Du(Rn) ⊆ (a,b), i.e. the range of its gradient Du is valued in the open segment (a,b) = {x ∈ R
n | x = λa + (1 − λ)b, λ ∈ (0,1)},

(ii) H p(Du(Rn)) ⊆ (span[b − a])⊥ , i.e. the gradient of H restricted on Du(Rn) is normal to (a,b).

Proof. By differentiating (5), we have

Du(x) = b + a

2
+ 1

2
f ′

(
b − a

2
· x

)
(b − a), (6)

for all x ∈ R
n . By rearranging (6), we have
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Fig. 1. The level sets of H .

Du(x) =
(

1

2
− 1

2
f ′

(
b − a

2
· x

))
a +

[
1 −

(
1

2
− 1

2
f ′

(
b − a

2
· x

))]
b. (7)

Since ‖ f ′‖L∞(R) < 1, there exists a δ > 0 such that

δ � 1

2
− 1

2
f ′

(
b − a

2
· x

)
� 1 − δ, (8)

for all x ∈ R
n . Hence, Du(x) is for all x ∈ R

n a strict convex combination of a and b. Thus, (i) follows. Since H is constant on
[a,b], there exists c ∈ R such that, for all t ∈ (0,1), we have

H
(
tb + (1 − t)a

) = c. (9)

Since H ∈ C1(Rn), we may differentiate to find

d

dt

(
H

(
tb + (1 − t)a

)) = (b − a) · H p
(
tb + (1 − t)a

)
, (10)

for all for 0 < t < 1. Hence, we obtain that (b − a) · H p(q) = 0 for all q ∈ (a,b). Since by (i) we have Du(Rn) ⊆ (a,b),
(ii) follows as well. �
Lemma 4. Let u be given by (5) with f ∈ C2(R) satisfying ‖ f ′‖L∞(R) < 1. Then, (5) defines a C2(Rn) solution of the Aronsson PDE (1).

Proof. By (5) and our assumption, the Hessian D2u(x) exists for all x ∈ R
n . By differentiating (6), we have

D2u(x) = 1

4
f ′′

(
b − a

2
· x

)
(b − a) ⊗ (b − a). (11)

We now calculate using (11) and (6):

A[u](x) = D2u(x) : H p
(

Du(x)
) ⊗ H p

(
Du(x)

)

= 1

4
f ′′

(
b − a

2
· x

)
(b − a) ⊗ (b − a) : H p

(
b + a

2
+ 1

2
f ′

(
b − a

2
· x

)
(b − a)

)

⊗ H p

(
b + a

2
+ 1

2
f ′

(
b − a

2
· x

)
(b − a)

)
. (12)

By employing Lemma 3, we have

A[u](x) =
{
(b − a) · H p

(
b + a

2
+ 1

2
f ′

(
b − a

2
· x

)
(b − a)

)}2

· 1

4
f ′′

(
b − a

2
· x

)
(13)

= 0

and the lemma follows. �
Hence, in the case of smooth u the PDE (1) is satisfied because the Hessian D2u is normal to H p(Du) ⊗ H p(Du) in the

space of symmetric matrices. Now we conclude with the general case of merely Lipschitz f .
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Proof of Theorem 1. Let u be given by (5) with f ∈ W 1,∞
loc (R) and ‖ f ′‖L∞(R) < 1. Let ηε , ε > 0, be the standard mollifier

and define f ε := f ∗ ηε ∈ C∞(R). Let also uε be given by (5) with f ε in the place of f . Then, f ε −→ f in C0(R) as ε → 0
and hence uε −→ u in C0(Rn) as ε → 0. Moreover,

∥∥ f ε ′∥∥
L∞(R)

� ess sup
x∈R

∫
R

∣∣ f ′(x − y)
∣∣∣∣ηε(y)

∣∣ dy (14)

and hence ‖ f ε ′‖L∞(R) � ‖ f ′‖L∞(R) < 1. Consequently, by Lemmas 3 and 4, all uε are smooth entire solutions to PDE (1):
A[uε] = 0. By the stability of viscosity solutions, we have A[u] = 0 on R

n in the viscosity sense and Theorem 1 follows. �
Example 5. The choice f (t) := 1

2 |t| for |t| � 1 and f (t + 2) = f (t) gives a non-C1 solution u to the PDE (1). The choice

f (t) := 1
2

∫ t
0 Kα,ν(s)ds with Kα,ν ∈ C0(R) the singular function of [9] gives a nowhere twice differentiable solution u to (1)

with D2u existing only as a singular first order distribution.
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