
C. R. Acad. Sci. Paris, Ser. I 349 (2011) 1195–1197
Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Differential Geometry

A Note on surfaces with parallel mean curvature

Une Note sur des surfaces de courbure moyenne parallèle

Dorel Fetcu a,1,2, Harold Rosenberg b

a Department of Mathematics, “Gh. Asachi” Technical University of Iasi, Bd. Carol I no. 11, 700506 Iasi, Romania
b IMPA, Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro, Brasil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 February 2011
Accepted 18 October 2011
Available online 6 November 2011

Presented by the Editorial Board

We use a Simons type equation in order to characterize complete non-minimal pmc
surfaces with non-negative Gaussian curvature.
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r é s u m é

Dans cette Note, on étudie des immersions isométriques de surfaces complètes Σ2

dans Mn(c) × R, ou Mn(c) est une variété complète simplement connexe de courbure
sectionnelle constante c. On classifie ces immersions, lorsque leur vecteur courbure
moyenne est parallèle dans le fibré normal et leur courbure intrinsèque est positive ou
nulle. L’outil principal est une différentielle quadratique holomorphe dont la partie sans
trace satisfait l’équation de Codazzi.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. The main result

Let Mn(c) be a simply-connected n-dimensional manifold, with constant sectional curvature c, consider the product
manifold M̄ = Mn(c) × R, and let Σ2 be an immersed surface in M̄ .

Definition 1.1. The surface Σ2 is called a pmc surface if its mean curvature vector H is parallel in the normal bundle. More
precisely, ∇⊥H = 0, where the normal connection ∇⊥ is defined by the Weingarten equation

∇̄X V = −AV X + ∇⊥
X V ,

for any vector field X tangent to Σ2 and any vector field V normal to the surface. Here ∇̄ is the Levi-Civita connection on
M̄ and A is the shape operator.

When the dimension of M̄ is equal to 3, an immersed pmc surface in M̄ is a surface with constant mean curvature
(a cmc surface). U. Abresch and H. Rosenberg introduced in [1,2] a holomorphic differential on such surfaces and then
completely classified those cmc surfaces on which it vanishes. In order to extend their results to the case of ambient spaces
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M̄ = Mn(c)×R, with n � 2, H. Alencar, M. do Carmo and R. Tribuzy defined in [3,4] a real quadratic form Q on pmc surfaces
by

Q (X, Y ) = 2〈AH X, Y 〉 − c〈X, ξ〉〈Y , ξ〉, (1)

where ξ is the unit vector tangent to R, and proved that its (2,0)-part (which for n = 2 is just the Abresch–Rosenberg
differential) is holomorphic.

Using this quadratic form, we will prove the following:

Theorem 1.2. Let x : Σ2 → Mn(c) × R, c �= 0, be an isometrically immersed complete non-minimal pmc surface with non-negative
Gaussian curvature. Then one of the following holds:

(1) the surface is flat;
(2) Σ2 is a minimal surface of a totally umbilical hypersurface of Mn(c);
(3) Σ2 is a cmc surface in a 3-dimensional totally umbilical submanifold of Mn(c);
(4) the surface lies in M4(c) × R ⊂ R

6 (endowed with the Lorentz metric), and there exists a plane P such that the level lines of the
height function p → 〈x(p), ξ〉 are curves lying in planes parallel to P .

Remark 1.3. The same result was obtained by H. Alencar, M. do Carmo and R. Tribuzy in the case when c < 0 (Theorem 3
in [4]).

In order to prove Theorem 1.2 we will need the following Simons type equation obtained by S.-Y. Cheng and S.-T. Yau
(Eq. (2.8) in [6]), which generalizes some previous results in [9–11]. Let N be an n-dimensional Riemannian manifold, and
consider a symmetric operator S on N , that satisfies the Codazzi equation (∇X S)Y = (∇Y S)X , where ∇ is the Levi-Civita
connection on the manifold. Then, we have

1

2
�|S|2 = |∇ S|2 +

n∑
i=1

λi(trace S)ii + 1

2

n∑
i, j=1

Riji j(λi − λ j)
2, (2)

where λi , 1 � i � n, are the eigenvalues of S , and Rijkl are the components of the Riemannian curvature of N .

2. The proof of Theorem 1.2

Let us consider an operator S , defined on the surface Σ2 by

S = 2AH − c〈T ,·〉T +
(

c

2
|T |2 − 2|H|2

)
I, (3)

where T is the component of ξ tangent to the surface. When the ambient space is 3-dimensional this operator was intro-
duced in [5]. We shall prove that |S|2 is a bounded subharmonic function on the surface.

First, it is easy to see that

〈S X, Y 〉 = Q (X, Y ) − trace Q

2
〈X, Y 〉, (4)

where Q is the quadratic form given by (1), which implies that S is symmetric and traceless. Another direct consequence
of (4) is the following:

Lemma 2.1. The (2,0)-part of Q vanishes on Σ2 if and only if S = 0 on the surface.

The following lemma is proved in [5]:

Lemma 2.2. The operator S satisfies the Codazzi equation (∇X S)Y = (∇Y S)X, where ∇ is the Levi-Civita connection on the surface.

From Lemma 2.2, Eq. (2) and the fact that trace S = 0, we easily get

1

2
�|S|2 = 2K |S|2 + |∇ S|2, (5)

where K is the Gaussian curvature of the surface.
Now, let us consider the local orthonormal frame field {E3 = H

|H| , E4, . . . , En+1} in the normal bundle, and denote Aα =
AEα . It follows that trace A3 = 2|H| and trace Aα = 0, for all α > 3.
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From the definition (3) of S , we have, after a straightforward computation,

det A3 = 1

|H|2 det AH = |H|2 − 1

8|H|2 |S|2 − c2

16|H|2 |T |4 − c

4|H|2 〈ST , T 〉,

and then, by using the equation of Gauss of Σ2 in M̄ ,

R(X, Y )Z = c
{〈Y , Z〉X − 〈X, Z〉Y − 〈Y , T 〉〈Z , T 〉X + 〈X, T 〉〈Z , T 〉Y + 〈X, Z〉〈Y , T 〉T − 〈Y , Z〉〈X, T 〉T

}

+
n+1∑
α=3

{〈AαY , Z〉Aα X − 〈Aα X, Z〉AαY
}
.

The Gaussian curvature can be written as

K = c
(
1 − |T |2) + |H|2 − 1

8|H|2 |S|2 − c2

16|H|2 |T |4 − c

4|H|2 〈ST , T 〉 +
∑
α>3

det Aα. (6)

Since trace Aα = 0, it follows that det Aα � 0, for all α > 3. Therefore, as K � 0, we get

− 1

8|H|2 |S|2 − c

4|H|2 〈ST , T 〉 − c2

16|H|2 |T |4 + c
(
1 − |T |2) + |H|2 � 0.

From |〈ST , T 〉| � 1√
2
|T ||S| it results that − c

4|H|2 〈ST , T 〉 � |c|
4
√

2|H|2 |S|, which implies

− 1

8|H|2 |S|2 + |c|
4
√

2|H|2 |S| + c
(
1 − |T |2) + |H|2 � 0.

Next, we shall consider two cases as c < 0 or c > 0, and will prove that, in both situations, |S| is bounded from above.
If c < 0 we have

− 1

8|H|2 |S|2 − c

4
√

2|H|2 |S| + |H|2 � 0

and then |S| �
√

c2+|H|2−c√
2

.

When c > 0 it follows that

− 1

8|H|2 |S|2 + c

4
√

2|H|2 |S| + c + |H|2 � 0,

which is equivalent to |S| �
√

c2+16c|H|2+16|H|2+c√
2

.

As the surface is complete and has non-negative Gaussian curvature, it follows, from a result of A. Huber in [8], that Σ2

is a parabolic space. From the above calculation and (5), we get that |S|2 is a bounded subharmonic function and it follows
that |S| is a constant. Again using Eq. (5), one concludes that K = 0 or S = 0. From Lemma 2.1, we see that, when Σ2 is
not flat, the (2,0)-part of the quadratic form Q vanishes on the surface, and then we obtain the last three items of our
Theorem exactly as in the proofs of Theorem 2 and Theorem 3 in [4].

Remark 2.3. M. Batista characterized some cmc surfaces in M2(c) × R, under some assumptions on their mean curvature
and on |S|. Since these assumptions imply that these surfaces have non-negative Gaussian curvature (this can be easily
verified by using (6) and the fact that |ST |2 = 1

2 |T |2|S|2. We remark the converse is not necessarily true), we can see that
Theorem 3.1 in [7] generalizes his results (Theorem 1.2 and Theorem 1.3 in [5]).
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