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This is an announcement of results whose proofs will be published elsewhere: We establish
forms of the Cst conjecture of Fontaine–Jannsen for proper semistable pairs over a complete
discrete valuation ring R of mixed characteristic (0, p) with perfect residue field, and
partially properly supported cohomology. We derive the conjecture Cpst for separated
K -schemes of finite type, where K is the fraction field of R . The proof is based on the
method of syntomic complexes and p-adic vanishing cycles. A new ingredient is the use
of hollow log schemes à la Ogus to provide tubular neighborhoods of intersections of
components of divisors with normal crossings.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Cette Note annonce des résultats dont les démonstrations seront publiées ailleurs. Ils
concernent des formes de la conjecture Cst de Fontaine–Jannsen pour les paires semistables
propres sur un anneau de valuation discrète complet R de caractéristique mixte (0, p) à
corps résiduel parfait et des groupes de cohomologie partiellement à support propre. On
en déduit la conjecture Cpst pour les K -schémas séparés de type fini, où K est le corps
des fractions de R . La méthode de démonstration est celle des complexes syntomiques
et des cycles évanescents p-adiques. Un nouvel ingrédient est l’utilisation de log schémas
creux à la Ogus, qui fournissent des voisinages tubulaires d’intersections de composantes
de diviseurs à croisements normaux.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Statements of results

Let K be a complete discrete valuation field of mixed characteristic (0, p) whose residue field k is perfect. Let W be
the ring of Witt vectors with coefficients in k, and K0 be its fractional field. Let O K denote the valuation ring of K , K̄ an
algebraic closure of K , and G K = Gal(K̄/K ) the absolute Galois group of K . Let (X, D) be a semistable pair over O K . (Here
we replace “strict semistable” and “strict normal crossings” in the definition of a strict semistable pair in [2, Section 6.3] by
“semistable” and “normal crossings” respectively.) Let Y and C be the special fibers of X and D respectively. Let D = D1 ∪ D2

be a decomposition of D such that D1 and D2 do not contain common irreducible components. Put C i := Di ⊗O K k for
i = 1,2. For i = 1,2, let M ⊃ M(Di) be the log-structures on X (in the sense of Fontaine–Illusie–Kato [6]) defined by the
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divisor Y ∪ D and Y ∪ Di respectively, and M XK be the one defined by the divisor D K , where the subscripts (−)K denote
the base change K⊗O K . For i = 1,2, let MY ⊃ MY (C i) be the pull-back log-structures on Y from the log-structure M X and
M X (Di) respectively. Let N be the log-structure on S := Spec O K defined by the maximal ideal, and N0

n be the log-structure

on Spec Wn associated to Γ (Spec k, N0
1) → k

[ ]→ Wn , where N0
1 is the log-structure on Spec k pulled-back from (S, N), and

[−] is the Teichmüller map.
We define “partially properly supported cohomologies” in the étale context, the de Rham one, and the crystalline one.

They have proper support on D1
K̄

, D1
K , and C1 respectively. Let j1, j2 be the open immersions (X \ D1)K̄ ↪→ XK̄ , and (X \

D)K̄ ↪→ (X \ D1)K̄ , respectively. Then, we define Hm
ét(XK̄ , D1

K̄ !, D2
K̄∗,Qp) := Hm

ét(XK̄ , j1!R j2∗Qp). Here, we have a continuous

action of G K on this group. Let j′1, j′2 denote the open immersions (X \ D)K̄ ↪→ (X \ D2)K̄ and (X \ D2)K̄ ↪→ XK̄ respectively.
The morphism j1!R j2∗Qp ⊗L j′2!R j′1∗Qp → j1! j2!Qp induces a product structure

Hi
ét

(
XK̄ , D1

K̄ !, D2
K̄∗,Qp

) ⊗ H j
ét

(
XK̄ , D2

K̄ !, D1
K̄∗,Qp

) → Hi+ j
ét,c

(
(X \ D)K̄ ,Qp

)
.

Next, let ω•
XK /K = Ω•

XK /K (log D K ) be the de Rham complex with log poles along D K , and I(D1
K ) be the defining ideal of

D1
K in O XK . Then, we define Hm

dR(XK , D1
K !, D2

K∗/K ) := Hm(XK , I(D1
K )ω•

XK /K ). Here, we have a filtration on it by the image

of Hm(XK , I(D1
K )ω

•�i
XK /K ). The morphism I(D1

K )ω•
XK /K ⊗ I(D2

K )ω•
XK /K → I(D K )ω•

XK /K induces a product structure

Hi
dR

(
XK , D1

K !, D2
K∗/K

) ⊗ H j
dR

(
XK , D1

K !, D2
K∗/K

) → Hi+ j
dR,c

(
(X \ D)K /K

)
,

where we put Hi+ j
dR,c((X \ D)K /K ) := Hi+ j

dR (XK , D K !,∅∗/K ).
Finally, to define the crystalline cohomology with partial proper support, we define some crystalline sheaves (see also

[9, Sections 2 and 5]). We define a sheaf of monoids MY /Wn by Γ ((U , T , MT , δ), MY /Wn ) := Γ (T , MT ) for (U , T , MT , δ) ∈
((Y , MY )/(Wn, N0

n , pWn, γ ))
log
crys, and an ideal sheaf IY /Wn (C1) of MY /Wn by setting Γ ((U , T , MT , δ), IY /Wn (C1)) to consist

of a ∈ Γ ((U , T , MT , δ), MY /Wn ) such that the image of a in MT ,x̄/O×
T ,x̄

∼= MY ,x̄/O×
Y ,x̄ is contained in p at all points x ∈ T

and all primes p ∈ Spec(MY ,x̄(C1)/O×
Y ,x̄) of height 1 horizontal with respect to N0

n, f (x)
/O×

Wn, f (x)
→ MY ,x̄(C1)/O×

Y ,x̄ , i.e.,

such that the image of N0
n, f (x)

/O×
Wn, f (x)

is contained in (MY ,x̄(C1)/O×
Y ,x̄) \ p. We define an ideal KY /Wn (C1) of OY /Wn by

IY /Wn (C1)OY /Wn . Then, we define

Hm
log -crys

(
Y , C1

! , C2∗
) := lim←−

n
Hm

crys

(
(Y , MY )/

(
Wn, N0

n

)
, KY /Wn

(
C1)) ⊗ Qp .

The Frobenius morphism induces a semilinear automorphism ϕ on Hm
log -crys(Y , C1

! , C2∗). We define a monodromy operator N
on it as follows. Take an embedding system {(U •, M) ↪→ (Z•, M Z•), {F Zn }n} of (Y , MY ) → (Spec Wn[T ], M). Then, we have a
distinguished triangle (see also [5, Section 3.6])

Rθ∗
(

KD•′ ⊗ ω•
(Z•′ ,M

Z•′ )/(Wn,N0
n )

)[−1] → Wn ⊗L
Wn〈T 〉 Rθ∗

(
KD•′ ⊗ ω•

Z•′/Wn

)

→ Rθ∗
(

KD•′ ⊗ ω•
(Z•′ ,M

Z•′ )/(Wn,N0
n )

) [+1]→ ,

where (D•, δD• ) is the PD-envelope of U • ↪→ Z• , KD• := KY /Wn (C1)(U•↪→D•,δD• ) , θ = (θ∗, θ∗) : (Y •)∼ét → Y ∼
ét is the canonical

morphism of topoi. The boundary map of the exact sequence after taking H∗(Y ,−) of the above distinguished trian-
gle induces a monodromy operator N on Hm

log -crys(Y , C1
! , C2∗) satisfying N ϕ = pϕN after taking Qp ⊗ lim←−n

. (We can
also define the monodromy operator by the method of [8, Section 4.3].) We then get a structure of (ϕ, N )-module on
Hm

log -crys(Y , C1
! , C2∗). The morphism K (C1)Y /Wn ⊗ K (C2)Y /Wn → K (C)Y /Wn induces a product structure

Hi
log -crys

(
Y , C1

! , C2∗
) ⊗ H j

log -crys

(
Y , C2

! , C1∗
) → Hi+ j

log -crys,c(Y \ C),

where Hi+ j
log -crys,c(Y \ C) := Hi+ j

log -crys(Y , C!,∅∗).
Note that Hm(X,∅!, D∗) = Hm(X \ D), and Hm(X, D !,∅∗) = Hm

c (X \ D) for each cohomology where X = XK̄ , XK , Y , and
D = D K̄ , D K , C respectively.

We construct a Hyodo–Kato isomorphism and a comparison isomorphism for partially properly supported cohomologies:

Proposition 1.1 (Hyodo–Kato isomorphism for partially properly supported cohomology). Take a uniformizer π ∈ K . Then, we have
an isomorphism:

ρπ : K ⊗K0 Hm
log -crys

(
Y , C1

! , C2∗
) ∼→ Hm

dR

(
XK , D1

K !, D2
K∗/K

)
.

Remark. For a unit u ∈ O × , we have ρπu = ρπ exp(log(u)N ). See also [5, Theorem (5.1)] and [8, Remark 4.4.18].
K
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Theorem 1.2 (Cst for partially properly supported cohomology). There is a Bst-linear isomorphism

Bst ⊗Qp Hm
ét

(
XK̄ , D1

K̄ !, D2
K̄∗,Qp

) ∼= Bst ⊗K0 Hm
log -crys

(
Y , C1

! , C2∗
)
,

which preserves the action of G K (g ⊗ g on LHS, g ⊗ 1 on RHS), the Frobenius (ϕ ⊗ 1 on LHS, ϕ ⊗ ϕ on RHS), and the monodromy
operator (N ⊗ 1 on LHS, N ⊗ 1 + 1 ⊗ N on RHS). It also preserves the Hodge filtration after tensoring with BdR over Bst (Fil ⊗ Hm

ét on
LHS,

∑
Fil⊗Fil on RHS under the above Hyodo–Kato isomorphism after choosing a uniformizer π ∈ K ). Moreover, these are compatible

with product structures.

By standard arguments using de Jong’s alterations (cf. [10, appendix]) we derive the de Rham conjecture and the po-
tentially semistable conjecture for separated K -schemes of finite type, as well as variants for partially properly supported
cohomologies. For de Rham cohomology of non-smooth varieties, we use the algebraic de Rham cohomology defined by
Hartshorne (cf. [3,4]).

Theorem 1.3 (CdR for partially properly supported cohomology). Let X be a proper smooth K -scheme, and D be a normal crossing
divisor on X. Let D be D1 ∪ D2 , where D1 and D2 have no common irreducible components. Then, there exists a canonical BdR-
isomorphism

BdR ⊗Qp Hm
ét

(
XK̄ , D1

K̄ !, D2
K̄∗,Qp

) ∼= BdR ⊗K Hm
dR

(
X, D1

! , D2∗/K
)
,

which preserves the actions of G K and the Hodge filtrations. Moreover, it is compatible with the product structures.

Remark. By passing to the associated graded, we get a Hodge–Tate decomposition:

ˆ̄K ⊗Qp Hm
ét

(
XK̄ , D1

K̄ !, D2
K̄∗,Qp

) ∼=
⊕

0� j�m

ˆ̄K (− j) ⊗K Hm− j(X, I
(

D1)Ω j
X/K (log D)

)
.

Theorem 1.4 (CdR). Let U be a separated K -scheme of finite type. Then, there exist canonical BdR-isomorphisms

BdR ⊗Qp Hm
ét(U K̄ ,Qp) ∼= BdR ⊗K Hm

dR(U/K ), BdR ⊗Qp Hm
ét,c(U K̄ ,Qp) ∼= BdR ⊗K Hm

dR,c(U/K ),

which preserve the actions of G K and the Hodge filtrations. Here, HdR and HdR,c mean Hartshorne’s algebraic de Rham cohomology.

Remark. We define the Hodge filtration on Hartshorne’s algebraic de Rham cohomology in the following way: Let U • → U
be a hypercovering over K , and U • ↪→ Z• be an embedding, where Uν ↪→ Zν is a closed immersion and Zν is smooth over
K for each ν . Put Ẑ• and Ω̂•′

Z•/K to be the formal completions of Z• and Ω•′
Z•/K along the ideal of U • respectively. Then, we

define i-th Hodge filtration to be the image of the homomorphism Hm( Ẑ•, Ω̂•′�i
Z•/K ) → Hm( Ẑ•, Ω̂•′

Z•/K ) = Hm
dR(U/K ).

Theorem 1.5 (Cpst). (See also [2, Section 1].) Let U be a scheme of finite type over Spec K . Then, Hm
ét(U K̄ ,Qp), Hm

ét,c(U K̄ ,Qp) are
potentially semistable p-adic representations of G K .

Remark. By a theorem of Berger and André–Kedlaya–Mebkhout (“de Rham representations are potentially semistable rep-
resentations”, see [1]), Theorem 1.4 implies Theorem 1.5. However, we show it without using the (ϕ,Γ )-theory, the rigid
analytic method, or the p-adic differential equation theory.

2. Outline of proof

We use the method of syntomic cohomology. Product structures play a key role in the final step of the proof. The crucial
point is to show the compatibility of comparison maps with the product structures. We do this by introducing “hollow log
schemes” (à la Ogus [7]).

Let us come back to the situation of Theorem 1.2. For simplicity we assume that D2 = ∅ and D has simple normal
crossings. Put D(c) := ∐

# J=c, J⊂I

⋂
j∈ J D j , where D = ⋃

j D j . We construct comparison maps on the intersections of the

divisors D(c) ’s, and put them together to get a comparison map about the properly supported cohomology Hc (and the
partially properly supported cohomology in the general situation).

Let MD(c) be the pull-back to D(c) of the log-structure M . The non-trivial part of the log-structure MD(c) /O×
D(c) “spreads

over” D(c) , so we call these log schemes hollow log schemes (the notion of “hollow log schemes” first appeared in [7]). Note
that their reduction modulo pn is not log smooth over (Spec Wn, N0

n) for any n in general.
Let i(c) : (D(c), MD(c) ) → (X, M) to be the canonical morphism. Then, for the étale side, we have a resolution

0 → j!Z/pnZ(X\D)K̄
→ Z/pnZ(XK̄ ,M XK̄

) → i(1)∗ Z/pnZ
(D(1)

K̄
,M

D(1) )
→ i(2)∗ Z/pnZ

(D(2)

K̄
,M

D(2) )
→ ·· ·
K̄ K̄
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in the log étale site. For the de Rham side, we also have a similar resolution

0 → I(D K )ω•
(XK ,M XK ) → ω•

(XK ,M XK ) → i(1)∗ ω•
(D(1)

K ,M
D

(1)
K

)
→ i(2)∗ ω•

(D(2)
K ,M

D
(2)
K

)
→ ·· · .

By introducing a certain crystalline sheaf of rings O/hol we get a similar resolution for the crystalline side here. We define
O/hol on ((D(c)

n , M)/(Wn, N0
n , pWn, γ ))

log
crys as follows. First, we define a subsheaf Mhol

D(c) of MD(c) for c � 1 as follows. Take an

irreducible component V of D(c) . Then, we define a log-structure Mhol
V on V by pulling-back the log-structure on X defined

by the irreducible components of D in which the image of V in X is contained. Next, we define a crystalline sheaf Mhol on
the log crystalline site ((D(c)

n , M
D(c)

n
)/(Wn, N0

n , pWn, γ ))
log
crys. For ((D(c)

n , M
D(c)

n
)/(Wn, N0

n , pWn, γ ))
log
crys � (i : U ↪→ T , MT , δ),

let Mhol
T denote the subsheaf of MT characterized by the isomorphism

i∗Mhol
D(c)

n
|U /O×

U
∼= Mhol

T /O×
T

under the isomorphism i∗M|U /O×
U

∼= MT /O×
T . We define Mhol

(i:U ↪→T ,MT ,δ)
:= Mhol

T . Then, we define the crystalline sheaf O/hol

on ((D(c)
n , M)/(Wn, N0

n , pWn, γ ))
log
crys to be

O/hol
(i:U ↪→T ,MT ,δ)

:= OT /
(
PD-ideal generated by the image of Mhol

T \ O×
T → OT

)

for ((D(c)
n , M

D(c)
n

)/(Wn, N0
n , pWn, γ ))

log
crys � (i : U ↪→ T , MT , δ).

We have a product structure

Z/pnZ(XK̄ ,MK̄ ) ⊗ [
i(•)∗ Z/pnZ

(D(•)
K̄

,M
D(•)

K̄

)

] → [
i(•)∗ Z/pnZ

(D(•)
K̄

,M
D(•)

K̄

)

]
,

which induces the product structure Hi
ét ⊗ H j

ét,c → Hi+ j
ét,c , and a product

ω•′
(XK ,M XK ) ⊗ [

i(•)∗ ω•′
(D(•)

K ,M
D(•)

K
)

] → [
i(•)∗ ω•′

(D(•)
K ,M

D(•)
K

)

]
,

which induces the product structure Hi
dR ⊗ H j

dR,c → Hi+ j
dR,c . We show the compatibility of the comparison maps with the

product structures.
In the proof of the general Cpst conjecture we establish a comparison isomorphism

Bst ⊗Qp Hm
ét,(c)

(
U •̄

K
,Qp

) ∼= Bst ⊗W (kL) Hm
crys,(c)

((
U •) ⊗O L kL/W (kL)

)
,

for a truncated simplicial semistable pair U • over O L where [L : K ] < ∞, and H(c) = H or Hc .
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