

Complex Analysis

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

An avoidance criterion for normal functions $\stackrel{\text{\tiny{\scale}}}{\to}$

Un critère d'évitement pour des familles normales

Yan Xu^a, Huiling Qiu^b

^a Institute of Mathematics, School of Mathematics, Nanjing Normal University, Nanjing 210046, PR China
^b Department of Applied Mathematics, Nanjing Audit University, Nanjing 210029, PR China

ARTICLE INFO

Article history: Received 28 July 2011 Accepted after revision 19 October 2011 Available online 9 November 2011

Presented by the Editorial Board

ABSTRACT

Let *f* be a meromorphic function in the unit disc Δ , φ_1 , φ_2 and φ_3 be three functions meromorphic in Δ and continuous on closure of Δ such that $\varphi_i(z) \neq \varphi_j(z)$ ($1 \leq i < j \leq 3$) on the unit circle |z| = 1. If $f(z) \neq \varphi_i(z)$ (i = 1, 2, 3) in Δ , then *f* is normal.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soit f une fonction méromorphe dans le disque unité Δ , soient φ_1, φ_2 et φ_3 trois fonctions méromorphes dans Δ et continues sur l'adhérence de Δ et dont les restrictions au cercle unité sont deux à deux distinctes. Alors, si la fonction f est distincte des $\varphi_i(z)$ (i = 1, 2, 3), elle est normale.

 $\ensuremath{\mathbb{C}}$ 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let *D* be a domain in the complex plane. The family \mathcal{F} is said to be normal in *D*, in the sense of Montel, if for any sequence $\{f_n\}$ in \mathcal{F} there exists a subsequence $\{f_{n_j}\}$, such that $\{f_{n_j}\}$ converges spherically locally uniformly in *D* to a meromorphic function or ∞ (see [4,5]).

A function *f* meromorphic in the unit disc $\Delta = \{z: |z| < 1\}$ is called a normal function if and only if the family $\{f(S(z))\}$, where z' = S(z) denotes an arbitrary one-one conformal mapping of Δ onto itself, is normal. The notion was introduced by Lehto and Virtanen [2].

A well-known result about normal functions is the following:

Theorem A. Let f be a meromorphic function in the unit disc Δ . If f omits at least three distinct values in Δ , then f is normal.

We say the functions f and g avoid each other uniformly if there exists a $\delta > 0$ such that, for each point z in their common domain, the spherical distance between f(z) and g(z) is at least δ . In [1], Lappan extended three distinct values in Theorem A to three continuous functions that avoid each other uniformly.

Theorem B. Let g_1 , g_2 and g_3 be three continuous functions that avoid each other uniformly in the unit disc Δ . Further, for each j = 1, 2, 3, let the family $\{g_j \circ \phi: \phi \in \Phi\}$ be normal in Δ , where $\Phi = \{\phi: \Delta \to \Delta, \phi \text{ is conformal mapping}\}$. Let f be a function meromorphic in Δ such that $f(z) \neq g_i(z)$ for i = 1, 2, 3. Then f is a normal function.

 $^{^{\}star}$ The first author is supported by NNSF of China (Grant Nos. 10871094; 11171045).

E-mail addresses: xuyan@njnu.edu.cn (Y. Xu), qiuhuiling1304@sina.com (H. Qiu).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2011.10.018

Lappan [1] also pointed out that the hypothesis that the functions g_1 , g_2 and g_3 avoid each other *uniformly* is necessary. However, when the functions g_1 , g_2 , and g_3 are all meromorphic functions in the unit disc Δ and continuous on the closure of Δ , we need these functions to avoid each other only at each point of the unit circle, but not necessarily on Δ .

Theorem 1. Let f be a meromorphic function in the unit disc Δ , φ_1 , φ_2 and φ_3 be three functions meromorphic in Δ and continuous on closure of Δ such that $\varphi_i(z) \neq \varphi_i(z)$ ($1 \leq i < j \leq 3$) on the unit circle |z| = 1. If $f(z) \neq \varphi_i(z)$ (i = 1, 2, 3) in Δ , then f is normal.

Clearly, Theorem 1 extends Theorem A.

2. Proof of Theorem 1

To prove our result, we need the following result due to Lohwater and Pommerenke:

Lohwater–Pommerenke Theorem. (See [3].) A function f meromorphic in the unit disc Δ is a normal function if and only if there do not exist sequences $\{z_n\}$ and $\{\rho_n\}$ with $z_n \in \Delta$, and $\rho_n > 0$, $\rho_n \to 0$ such that $\{g_n(z) = f(z_n + \rho_n z)\}$ converges uniformly on each compact subset of the complex plane to a function g(z), where g(z) is a non-constant meromorphic function.

Proof of Theorem 1. Assume that f, φ_1 , φ_2 , and φ_3 satisfy the hypotheses of the theorem and that f is not a normal function. Then, by Lohwater–Pommerenke Theorem, there exist sequences $\{z_n\}$ and $\{\rho_n\}$, with $z_n \in \Delta$ and $\rho_n > 0$, $\rho_n \to 0$ such that the sequence $\{g_n(z) = f(z_n + \rho_n z)\}$ converges uniformly on each compact subset of the complex plane to a function g(z), where g(z) is a non-constant meromorphic function. By taking a subsequence, if necessary, we may assume that $z_n \to z_0 \in \overline{\Delta}$, the closure of Δ . If $z_0 \in \Delta$, then $z_n + \rho_n z \to z_0$ for each complex number z, and $g_n(z) = f(z_n + \rho_n z) \to f(z_0)$, which would mean $g(z) \equiv f(z_0)$, violating the assumption that g is a non-constant function. Thus, we must have that $|z_0| = 1$.

Fix *i*, $1 \leq i \leq 3$, assume that $\varphi_i(z_0) \neq \infty$, and let

$$h_n(z) = f(z_n + \rho_n z) - \varphi_i(z_n + \rho_n z).$$

Then $h_n(z) \to g(z) - \varphi_i(z_0)$ uniformly on each compact subset of the plane. Since $f(z) - \varphi_i(z)$ is assumed to be never zero, it follows from a well-known theorem of Hurwitz that either $g(z) - \varphi_i(z_0) \equiv 0$ or $g(z) - \varphi_i(z_0)$ is never zero. But $g(z) - \varphi_i(z_0) \equiv 0$ means that g(z) is a constant function, violating the assumption that it is not. Thus, it follows that g(z) never assumes the value $\varphi_i(z_0)$.

If $\varphi_i(z_0) = \infty$, then we can take

$$h_n^*(z) = \frac{1}{f(z_n + \rho_n z)} - \frac{1}{\varphi_i(z_n + \rho_n z)}$$

and use the same argument (using h^* in place of h) to conclude that 1/g(z) does not assume the value 0, which means that g(z) does not assume the value $\infty = \varphi_i(z_0)$.

This same argument can be applied to each *i*, $1 \le i \le 3$, so we know that the non-constant meromorphic function *g* avoids the three distinct values $\varphi_1(z_0)$, $\varphi_2(z_0)$ and $\varphi_3(z_0)$. But this violates Picard's theorem. Thus the assumption that *f* is not a normal function is untenable, and we conclude that *f* is a normal function. \Box

3. A remark

Using the argument above and Nevanlinna's second fundamental theorems (see [5]), we obtain the following more general result:

Theorem 2. Let f be a meromorphic function in the unit disc Δ , φ_1 , φ_2 and φ_3 be three functions meromorphic in Δ and continuous on closure of Δ such that $\varphi_i(z) \neq \varphi_j(z)$ ($1 \leq i < j \leq 3$) on the unit circle |z| = 1, and let l_1 , l_2 and l_3 be positive integers or ∞ with $1/l_1 + 1/l_2 + 1/l_3 < 1$. If all zeros of $f(z) - \varphi_i(z)$ have multiplicity at least l_i for i = 1, 2, 3 in Δ , then f is normal.

Acknowledgement

We would like to thank the referee for his/her valuable comments and suggestions made to this paper.

References

^[1] P. Lappan, Avoidance criteria for normal families and normal functions, in: Progress in Analysis, Vol. I, II, Berlin, 2001, World Sci. Publ., River Edge, NJ, 2003, pp. 221–228.

^[2] O. Lehto, K.I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957) 47-65.

^[3] A.J. Lohwater, Ch. Pommerenke, On normal meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 550 (1973), 12 pp.

^[4] J. Schiff, Normal Families, Springer-Verlag, New York/Berlin, 1993.

^[5] L. Yang, Value Distribution Theory, Springer-Verlag & Science Press, Berlin, 1993.