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Let ω be a simply-connected planar domain. We give necessary and sufficient nonlinear
compatibility conditions of Saint-Venant type guaranteeing that, given two 2×2 symmetric
matrix fields (Eαβ) and (Fαβ) with components in L2(ω), there exists a vector field (ηi)

3
i=1

with components η1, η2 ∈ H1(ω) and η3 ∈ H2(ω) such that 1
2 (∂αηβ + ∂βηα + ∂αη3∂βη3) =

Eαβ and ∂αβη3 = Fαβ in ω for α,β = 1,2, the left-hand sides of these equations arising
naturally in nonlinearly elastic plate theory. Such a vector field η = (ηi) being uniquely
defined if it belongs to a particular closed subspace V 0(ω) of H1(ω)× H1(ω)× H2(ω), we
study the continuity properties of the nonlinear mapping (E, F ) ∈ (L2(ω))4 × (L2(ω))4 →
η ∈ V 0(ω) defined in this fashion.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit ω un domaine plan simplement connexe. On donne des conditions non linéaires de
compatibilité du type de Saint-Venant, nécessaires et suffisantes pour que, étant donné
deux champs (Eαβ) et (Fαβ) de matrices symétriques dont les éléments sont dans
L2(ω), il existe un champ de vecteurs (ηi)

3
i=1 avec des composantes η1, η2 ∈ H1(ω) et

η3 ∈ H2(ω) tel que 1
2 (∂αηβ + ∂βηα + ∂αη3∂βη3) = Eαβ et ∂αβη3 = Fαβ dans ω pour

α,β = 1,2, les membres de gauche de ces équations apparaissant naturellement dans
la théorie des plaques non linéairement élastiques. Un tel champ de vecteurs η = (ηi)

étant défini de façon unique s’il appartient à un sous-espace fermé V 0(ω) particulier de
H1(ω)× H1(ω)× H2(ω), on étudie les propriétés de continuité de l’application non linéaire
(E, F ) ∈ (L2(ω))4 × (L2(ω))4 → η ∈ V 0(ω) définie de cette façon.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. The classical approach to nonlinear plate theory

Greek indices vary in {1,2}, Latin indices vary in {1,2,3} (unless otherwise specified), and the convention summation
with respect to repeated indices is used. Partial derivatives of the first, resp. second, order are denoted ∂α or ∂i , resp. ∂αβ
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or ∂i j . Vector fields are denoted by boldface letters. The space of all symmetric N × N matrices is denoted S
N . Sets of

symmetric matrix fields are denoted by special Roman capital letters.
A domain in R

N is a bounded, open, and connected subset Ω of R
N with a Lipschitz-continuous boundary Γ , the set Ω

being locally on the same side of Γ .
To begin with, we briefly describe the classical Kirchhoff–von Kármán–Love model for a nonlinearly elastic plate (so named

after Kirchhoff [7], von Kármán [6], and Love [8]), which constitutes the point of departure for the present work. This model
has been fully justified from three-dimensional elasticity by means of Gamma-convergence theory by Friesecke, James and
Müller [5].

Let ω be a domain in R
2 and let ε > 0. Assume that the set ω × [−ε, ε] is the reference configuration of a nonlinearly

elastic plate of thickness 2ε made with a homogeneous and isotropic elastic material characterized by its two Lamé constants
λ � 0 and μ > 0 (the reference configuration is assumed to be a natural state). Let

aαβστ := 4λμ

λ + 2μ
δαβδστ + 2μ(δασ δβτ + δατ δβσ ),

where δαβ designates the Kronecker symbol, denote the components of the two-dimensional elasticity tensor of the plate,
which thus satisfies

aαβστ tστ tαβ � 4μ
∑
α,β

|tαβ |2 for all (tαβ) ∈ S
2.

The plate is subjected to applied forces, with resultants pi ∈ L2(ω) and qα ∈ L2(ω). Define the space

V (ω) := H1(ω) × H1(ω) × H2(ω).

Then the associated displacement problem consists in finding a displacement vector field ζ = (ζi) of the set ω (the middle
surface of the plate) that minimizes the functional J defined for each η = (ηi) ∈ V (ω) by

J (η) := 1

2

∫
ω

{
ε

4
aαβστ (∂σ ητ + ∂τ ησ + ∂σ η3∂τ η3)(∂αηβ + ∂βηα + ∂αη3∂βη3)

+ ε3

3
aαβστ ∂στ η3∂αβη3

}
dω − L(η),

where

L(η) :=
∫
ω

piηi dω −
∫
ω

qα∂αη3 dω,

over a closed subspace U (ω) of V (ω) that incorporates boundary conditions that are specific to the problem under consid-
eration. For instance, if the plate is clamped over a portion of its lateral face,

U (ω) := {
η = (ηi) ∈ V (ω); ηi = ∂αη3 = 0 on γ0

}
,

where γ0 is a portion of γ := ∂ω such that dγ -meas γ0 > 0. Then the corresponding minimization problem has at least one
solution if the norms ‖pα‖L2(ω) are small enough (Ciarlet and Destuynder [2]), or if γ = γ0, in which case there is no longer
any restriction on the magnitude of the norms ‖pα‖L2(ω) (Rabier [10]). The case pα = 0 had been previously considered by
Nečas and Naumann [9].

While the existence theory for the Dirichlet–Neumann problem (0 < dγ -meas γ0 < dγ -meas γ ) and Dirichlet problem
(γ0 = γ ) is thus well-established, little attention seems to have been given to the Neumann problem (γ0 = ∅), at least to the
authors’ best knowledge.

In this respect, one of the outcome of our study will be the existence of a solution to the minimization problem when γ0 = ∅

(see Ciarlet and Mardare [3]). To this end, we will re-formulate this minimization problem in terms of the unknowns

Eαβ := 1

2
(∂αηβ + ∂βηα + ∂αη3∂βη3) ∈ L2(ω) and Fαβ := ∂αβη3 ∈ L2(ω), α,β = 1,2,

i.e., through an approach that extends to the non-quadratic minimization problem considered here the intrinsic approach
applied by Ciarlet and Ciarlet Jr. [1] to the quadratic minimization problem of three-dimensional linearized elasticity. This is
why our first aim is to introduce and analyze (see Sections 2 and 3) conditions that extend to the nonlinear Kirchhoff–Love
plate theory the weak Saint-Venant compatibility conditions introduced in [1].

Complete proofs will be found in Ciarlet and Mardare [4].
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2. Nonlinear Saint-Venant compatibility conditions

To begin with, we have the following nonlinear analog of Theorem 3.2 of [1]:

Theorem 2.1 (Nonlinear Saint-Venant compatibility conditions). Let ω be a simply-connected domain in R
2 and let there be given

two symmetric matrix fields E = (Eαβ) ∈ L
2(ω) := L2(ω;S

2) and F = (Fαβ) ∈ L
2(ω) whose components satisfy the nonlinear

Saint-Venant compatibility conditions:

∂στ Eαβ + ∂αβ Eστ − ∂ασ Eβτ − ∂βτ Eασ = Fασ Fβτ − Fαβ Fστ in H−2(ω), (1)

∂σ Fαβ = ∂β Fασ in H−1(ω). (2)

Then there exists a vector field

η = (ηi) ∈ V (ω) := H1(ω) × H1(ω) × H2(ω)

such that

1

2
(∂αηβ + ∂βηα + ∂αη3∂βη3) = Eαβ in L2(ω), (3)

∂αβη3 = Fαβ in L2(ω). (4)

Besides, any other solution η̃ to Eqs. (3)–(4) is of the form

η̃(y) = η(y) + a + be ∧ y − η3(y)d + (d · y)e − 1

2
(d · y)d for almost all y ∈ ω, (5)

for some a ∈ R
3 , b ∈ R, and d ∈ R

2 , where (e)i := δi3 .

Sketch of proof. First, two successive applications of the weak Poincaré lemma (Theorem 3.1 in [1]) to Eqs. (2) show that
there exists η3 ∈ H2(ω) such that ∂αβη3 = Fαβ in L2(ω) (the assumption that ω is simply-connected is used here). Second,
let

eαβ := Eαβ − 1

2
∂αη3∂βη3 ∈ L2(ω).

Combining the expressions of second-order partial derivatives such as ∂στ (∂αη3∂βη3) for smooth functions η3 with the
density of C∞(ω) in H1(ω) and in H2(ω) and with the continuous injection of L1(ω) into H−2(ω) then eventually shows
that the above functions eαβ satisfy

∂στ eαβ + ∂αβeστ − ∂ασ eβτ − ∂βτ eασ = 0 in H−2(ω),

which are precisely the weak Saint-Venant compatibility conditions of Theorem 3.2 in [1] for N = 2. Hence this theorem shows
that there exists a vector field ηH = (ηα) ∈ H 1(ω) such that

1

2
(∂αηβ + ∂βηα) = eαβ = Eαβ − 1

2
∂αη3∂βη3 in L2(ω)

(the assumptions of simple-connectedness of ω is again used here). The existence of a solution η = (ηH , η3) ∈ V (ω) to
Eqs. (3)–(4) is thus established.

We next examine the question of uniqueness, for which only the assumption that ω is connected (this assumption is
contained in the assumption that ω is simply-connected) is used. So, assume that η̃ = (η̃H , η̃3) ∈ V (ω) and η = (ηH , η3) ∈
V (ω) satisfy

1

2
(∂αη̃β + ∂βη̃α + ∂αη̃3∂βη̃3) = 1

2
(∂αηβ + ∂βηα + ∂αη3∂βη3) in L2(ω), (6)

∂αβη̃3 = ∂αβη3 in L2(ω). (7)

It is then well known that, since ω is connected, Eqs. (7) imply that there exist a constant a3 and a vector d ∈ R
2 such

that

η̃3 = η3 + a3 + d · id a.e. in ω, (8)

where id denotes the identity mapping of the set ω. Using relation (8) in Eqs. (6) then implies that

1
(∂αη̃β + ∂βη̃α) = 1

(∂αη̂β + ∂βη̂α) in L2(ω), (9)

2 2
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where

η̂H = (η̂α) = ηH − η3d − 1

2
(d · id)d. (10)

It is again well known that, since ω is connected, relations (9) imply that there exist b ∈ R and aH ∈ R
2 such that

η̃H = η̂H + aH + be ∧ id a.e. in ω. (11)

Combining (8), (10), and (11), and letting a := (aH ,a3) then yields (5). �
Incidentally, Theorem 2.1 shows that, if a vector field η = (ηi) ∈ V (ω) satisfies

1

2
(∂αηβ + ∂βηα + ∂αη3∂βη3) = 0 and ∂αβη3 = 0 a.e. in ω,

then there exist a ∈ R
3, b ∈ R, and d ∈ R

2 such that η(y) = a + be ∧ y + (d · y)e − 1
2 (d · y)d for almost all y ∈ ω.

One can show (see [4]) that the nonlinear Saint-Venant compatibility conditions (1)–(2) are also necessary. This means
that, given any vector field η ∈ V (ω), the matrix fields E = (Eαβ) ∈ L

2(ω) and F = (Fαβ) ∈ L
2(ω) defined by Eqs. (3)–(4)

necessarily satisfy the relations (1)–(2) (in this case, the domain ω need not be simply-connected).
Note that the nonlinear Saint-Venant compatibility conditions (1)–(2) reduce in fact to three relations only, e.g.,

∂11 E22 + ∂22 E11 − 2∂12 E12 = (F12)
2 − F11 F22 in H−2(ω),

∂1 Fα2 = ∂2 Fα1 in H−1(ω).

Finally, note that Eqs. (3)–(4) can be also written in matrix form as

∇sηH + 1

2
∇η3∇ηT

3 = E and ∇2η3 = F in L
2(ω),

where (∇sηH )αβ := 1
2 (∂αηβ + ∂βηα) and ∇η3 := (∂αη3), so that ∇η3∇ηT

3 = (∂αβη3).
We now introduce a closed subspace V 0(ω) of V (ω) in which the uniqueness of a vector field η satisfying Eqs. (3)

and (4) is guaranteed.

Theorem 2.2. Let ω be a simply-connected domain in R
2 . Define the space

E(ω) := {
(E, F ) ∈ L

2(ω) × L
2(ω); ∂στ Eαβ + ∂αβ Eστ − ∂ασ Eβτ − ∂βτ Eασ = Fασ Fβτ − Fαβ Fστ in H−2(ω),

∂σ Fαβ = ∂β Fασ in H−1(ω)
}
. (12)

Then, given any (E, F ) ∈ E(ω), there exists a unique vector field

η ∈ V 0(ω) :=
{
η = (ηi) ∈ V (ω),

∫
ω

η dω = 0,

∫
ω

∂αη3 dω = 0,

∫
ω

(∂1η2 − ∂2η1)dω = 0

}
(13)

that satisfies Eqs. (3)–(4).

Sketch of proof. By Theorem 2.1, there exists η = (ηH , η3) ∈ V (ω) such that Eqs. (3)–(4) are satisfied; besides, for any
a ∈ R

3, b ∈ R, and d ∈ R
2,

η0 := η + a + be ∧ id − η3d + (d · id)e − 1

2
(d · id)d (14)

is also a solution to Eqs. (3)–(4). Let d := (−(
∫
ω dω)−1

∫
ω ∂αη3 dω), so that

∫
ω ∂αη0

3 dω = 0; it is then easily seen that there
exist a ∈ R

3 and b ∈ R such that the corresponding vector field η0 (as defined in (14)) belongs to the space V 0(ω).
To show that such a vector field η0 is unique, assume that η̃0 ∈ V 0(ω) also satisfies Eqs. (3)–(4), so that η̃0 is necessarily

of the form

η̃0 = η0 + a + be ∧ id − η3d + (d · id)e − 1

2
(d · id)d

for some a = (aH ,a3) ∈ R
3, b ∈ R, and d ∈ R

2. It is then easily seen, first that d = 0, then that a3 = 0, b = 0, and aH = 0. �
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3. Continuity of the mapping (E, F ) ∈ EEE(ω) → η ∈ V 0(ω)

We have the following nonlinear analog of Theorem 4.1 of [1]. The spaces E(ω) and V 0(ω) are those defined in (12)
and (13).

Theorem 3.1. Let ω be a simply-connected domain, and let

Φ : E(ω) → V 0(ω)

be the nonlinear bijection defined for each (E, F ) ∈ E(ω) by Φ(F , F ) := η, where η is the unique element in the space V 0(ω) that
satisfies Eqs. (3)–(4) (Theorem 2.2). Then there exists a constant C such that

∥∥Φ(E, F )
∥∥

H1(ω)×H1(ω)×H2(ω)
� C

(‖E‖L2(ω) + ‖F‖L2(ω) + ‖F‖2
L2(ω)

)
for all (E, F ) ∈ E(ω). (15)

Besides, the set E(ω) is sequentially weakly closed in L
2(ω)×L

2(ω), and Φ maps weakly convergent sequences in E(ω) endowed with
the topology of L

2(ω) × L
2(ω) into strongly convergent sequences in V 0(ω) endowed with the topology of L2(ω) × L2(ω) × H1(ω).

Sketch of proof. That the nonlinear mapping Φ is a bijection from E(ω) onto V 0(ω) follows from necessity of the non-
linear Saint-Venant compatibility conditions, and from their sufficiency (established in Theorem 2.2). Besides, for each
η = (ηH , η3) ∈ V 0(ω),

Φ−1(η) =
(

∇sηH + 1

2
∇η3∇ηT

3 ,∇2η3

)
.

Given any η = (ηH , η3) ∈ V 0(ω), the function η3 ∈ H2(ω) satisfies
∫
ω η3 dω = ∫

ω ∂αη3 dω = 0. Hence the Poincaré–
Wirtinger inequality implies that there exists a constant C1 such that

‖η3‖H2(ω) � C1
∥∥∇2η3

∥∥
L2(ω)

for all η ∈ V 0(ω). (16)

Writing ∇sηH = (∇sηH + 1
2 ∇η3∇ηT

3 )− 1
2 ∇η3(∇η3)

T , we then infer from the classical two-dimensional Korn’s inequality
that there exists a constant C2 such that

‖ηH‖H1(ω)×H1(ω) � C2

∥∥∥∥∇sηH + 1

2
∇η3∇ηT

3

∥∥∥∥
L2(ω)

+ ∥∥∇η3(∇η3)
T
∥∥

L2(ω)
for all η ∈ V 0(ω). (17)

Given any η = (ηH , η3) ∈ V 0(ω), the vector field ∇η3 ∈ H1(ω) × H1(ω) satisfies
∫
ω ∇η3 dω = 0; besides, the continuous

injection H1(ω) ↪→ L4(ω) holds. Hence there exist constants C3 and C4 such that

‖∇η3‖L4(ω) � C3‖∇η3‖H 1(ω) � C4‖η3‖H2(ω) � C1C4
∥∥∇2η3

∥∥
L2(ω)

for all η ∈ V 0(ω). (18)

Since, finally, there exists a constant C5 such that
∥∥∇η3(∇η3)

T
∥∥

L2(ω)
� C5

(‖∇η3‖L4(ω)

)2
for all η ∈ V 0(ω), (19)

inequality (15) follows by combining the above inequalities.
In what follows, →, resp. ⇀, denotes strong, resp. weak, convergence. Let (Ek, F k) ∈ E(ω), k � 1, and (E, F ) ∈ L

2(ω) ×
L

2(ω) be such that
(

Ek, F k) ⇀ (E, F ) in L
2(ω) × L

2(ω) as k → ∞.

By inequality (15), the sequence (ηk)∞k=1, where ηk := Φ(Ek, F k) ∈ V 0(ω) is then bounded in V 0(ω). Since V 0(ω) is reflex-
ive (as a closed subspace of H1(ω) × H1(ω) × H2(ω)), there exists a subsequence (η�)∞�=1 and η ∈ V 0(ω) such that

η� ⇀ η in H1(ω) × H1(ω) × H2(ω) and η� → η in L2(ω) × L2(ω) × H1(ω).

Hence F k
αβ = ∂αβηk

3 ⇀ ∂αβη3 in L2(ω), which shows that Fαβ = ∂αβη3 (uniqueness of the weak limit). Furthermore η�
3 → η3

in H1(ω) implies ∂αη�
3 → ∂αη3 in L2(ω), so that ∂αη�

3∂βη�
3 → ∂αη3∂βη3 in L1(ω). Since 1

2 (∂αη�
β + ∂βη�

α) ⇀ 1
2 (∂αηβ + ∂βηα)

in L2(ω), it follows that, for each ϕ ∈ D(ω),∫
ω

Ek
αβϕ dω →

∫
ω

1

2
(∂αηβ + ∂βηα + ∂αη3∂ηη3)ϕ dω,

which shows that Eαβ = 1
2 (∂αηβ + ∂βαα + ∂αη3∂βη3). Consequently, (E, F ) ∈ E(ω) since η ∈ V 0(ω). Therefore E(ω) is

sequentially weakly closed.
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Finally, the uniqueness of the limit implies that the whole sequence ηk strongly converges to η in L2(ω) × L2(ω) ×
H1(ω). �

Note that, when equivalently expressed in terms of the vector fields η ∈ V 0(ω) (instead of the matrix fields (E, F ) in
the space E(ω) of (12), inequality (15) provides an instance of a nonlinear Korn’s inequality.

In [3], Theorem 3.1 will be put to use for establishing the existence of a minimizer over the space E(ω) of the functional
J : E(ω) → R defined for each (E, F ) ∈ E(ω) by

J (E, F ) := 1

2

∫
ω

{
εaαβστ Eστ Eαβ + ε3

3
aαβστ Fστ Fαβ

}
dω − L

(
Φ(E, F )

)
, (20)

when pH = 0 (if pH �= 0, a vector field in R
2 must be introduced as an extra variable; cf. [3]), thereby justifying the

intrinsic approach for the Neumann problem described in Section 1. Besides, the convexity of the integrand in the functional
J of (20) with respect to its arguments E = (Eαβ) ∈ L

2(ω) and F = (Fαβ) ∈ L
2(ω) will lay the ground for defining a notion

of polyconvexity adapted to the Kirchhoff–von Kármán–Love theory of nonlinearly elastic plates.
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