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We introduce an efficient level set framework to parameter estimation problems governed
by parametrized partial differential equations. The main ingredients are: (i) an “admissible
region” approach to parameter estimation; (ii) the certified reduced basis method
for efficient and reliable solution of parametrized partial differential equations; and
(iii) a parameter-space level set method for construction of the admissible region. The
method can handle nonconvex and multiply connected regions. Numerical results for two
examples in design and inverse problems illustrate the versatility of the approach.
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r é s u m é

Nous présentons ici une recette « level set » efficace pour résoudre des problèmes
d’estimation de paramètres régis par des équations aux dérivées partielles. Ses ingrédients
principaux sont: (i) une « région admissible » sur laquelle procéder à l’estimation du
paramètre; (ii) la méthode éprouvée des bases réduites pour obtenir une solution efficace
et fiable des équations paramétrées aux dérivées partielles; et (iii) une méthode « level
set » sur l’espace des paramètres permettant de construire la « région admissible ». Cette
méthode peut aussi s’appliquer à des régions multi-connectées ou non-convexes. La
flexibilité de notre approche est démontrée à travers les résultats numériques obtenus
lors de l’étude d’un problème de design et de celle d’un problème inversé.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note we address the following problem: Given a system characterized by parameters μ, determine the “admis-
sible region,” i.e., the set of all parameter values which satisfy prescribed constraints on the system. The constraints may
be derived from experimental measurements in inverse problems, uncertainty or sensitivity tolerances in design, or feasi-
bility conditions in optimization and control problems. Furthermore, in engineering analysis these constraints often involve
outputs s(μ) of a parametrized partial differential equation (PDE) modeling the system behavior, whereas the parameters
typically describe geometry, physical properties, boundary conditions, or loads.

Our aim is to construct an efficient and rigorous approximation to the admissible region. The admissible region approach
was initially introduced in [2] for the solution of inverse problems using the reduced basis (RB) method. However, the
approach presented in [2] has several limitations: first, it can only deal with simply connected and convex – or, more
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generally, star-shaped – regions; and second, it can result in unwanted truncation of the region since the boundary is
determined by only a small number of points. Here, we present a novel approach based on the level set method [5] lifting
these limitations.

We first recall the RB recipe for second-order coercive elliptic PDEs (see [6] for a recent review): Given μ ∈ D ⊂ R
P ,

we evaluate the (scalar) output se(μ) = �(ye(μ)), where ye(μ) ∈ Y e satisfies a(ye(μ), v;μ) = f (v;μ), ∀v ∈ Y e. Here, μ ≡
(μ1, . . . ,μP ) and D are the parameter and parameter domain, respectively; Y e is a suitable Hilbert space with associated
inner product (w, v)Y e and induced norm ‖ · ‖Y e ; Ω ⊂ R

d , d = 1,2,3, is our spatial domain, a point in which is denoted
(x1, . . . , xd); � and f are bounded linear functionals; and, for any μ ∈ D, a(·, · ;μ) : Y e × Y e → R is a coercive, continuous,
bilinear form.

We now introduce a truth finite element (FE) space Y ⊂ Y e of (typically large) dimension N ; Y inherits the inner
product and norm from Y e. Our truth approximation is: given μ ∈ D, evaluate s(μ) = �(y(μ)), where y(μ) ∈ Y sat-
isfies a(y(μ), v;μ) = f (v;μ), ∀v ∈ Y . We define the parameter sample SN ≡ {μ1, . . . ,μN } and associated RB space,
Y N = span{y(μ1), . . . , y(μN)}. Given μ ∈ D, we evaluate the RB estimate sN (μ) = �(yN (μ)), where yN(μ) ∈ Y N satis-
fies a(yN(μ), v;μ) = f (v;μ), ∀v ∈ Y N . We can derive a posteriori bounds for the error in the RB output: |s(μ) − sN(μ)| �
�s

N (μ) ≡ ‖�(·)‖Y ′ ‖r(·;μ)‖Y ′/αLB(μ), ∀μ ∈ D. Here, the dual norm of the output and residual are defined as ‖�(·)‖Y ′ ≡
supv∈Y �(v)/‖v‖Y and ‖r(·;μ)‖Y ′ ≡ supv∈Y r(v;μ)/‖v‖Y , respectively; the residual is given by r(v;μ) = f (v;μ) −
a(yN(μ), v;μ), ∀v ∈ Y ; and αLB(μ) : D → R+ is a lower bound for the coercivity constant α(μ) ≡ infv∈Y a(v, v;μ)/‖v‖2

Y .

If a and f depend affinely on the parameter, e.g., a(w, v;μ) = ∑Q a
q=1 Θ

q
a (μ)aq(w, v), an efficient offline–online computa-

tional procedure can be developed to evaluate sN(μ) and �s
N (μ).

We recall that certified RB approximations have also been developed for parabolic problems where – directly considering
a time-discrete framework with K timesteps – the truth (resp. RB) field variable y(tk;μ) (resp. yN(tk;μ)), output s(tk;μ)

(resp. sN(tk;μ)), and associated output bound �s
N (tk;μ) are now also functions of the discrete time tk ≡ k�t , 1 � k � K ,

with timestep �t; see [2] for details.

2. The “admissible region” approach

We now formulate our parameter estimation problem: given prescribed constraints on the output s(μ) in the form of an
interval [a,b], we define the admissible region as

A = {
μ ∈ D

∣∣ s(μ) ∈ [a,b]}. (1)

If the outputs of interest s(μ) depend on the parameters μ through the underlying parametrized PDE, then numerical
methods for the construction or approximation of A would require repeated solution of the PDE. Unfortunately, evaluation
of the truth approximation output for a single parameter value is generally quite expensive, and direct construction of the
admissible region A thus requires great computational cost.

We thus use the RB method (see Section 1) which provides efficient certified approximations of the form

s(μ) ∈ [
s−

N (μ), s+
N (μ)

] ≡ [
sN (μ) − �s

N(μ), sN (μ) + �s
N(μ)

]
(2)

where s−
N and s+

N are rigorous upper and lower bounds to the true output s(μ). We may then replace all instances of the
truth output s(μ) with the RB bound appropriate to the particular context. We illustrate this idea using two examples: a
design problem and an inverse problem. We also note that these and the subsequent definitions directly extend to parabolic
problems: the constraints on the output (and output bounds) then have to hold for all discrete observation times.

In design problems, one often needs to find the values of the parameters μ satisfying uncertainty constraints or sensitivity
tolerances. These constraints are often given as intervals [a,b] = [τ − c, τ + d], where τ is a target or desired value, and c,
d represent the uncertainty or sensitivity tolerances. In this context we must guarantee that s(μ) is definitely in [a,b], and
we thus define the approximate admissible region as

Ades
N = {

μ ∈ D
∣∣ [

s−
N (μ), s+

N (μ)
] ⊆ [a,b]}. (3)

From (1) and (2) it follows that Ades
N ⊆ A, i.e., any μ ∈ Ades

N is certifiably also in A. Thus, no errant values of μ are
introduced due to the RB approximation, and the approximate tolerance is more stringent.

In inverse problems, the goal is to estimate the value of parameters μ consistent with experimental measurements given
as intervals, [a,b], reflecting measurement uncertainty. We seek the “possibility” region, the set of all parameter values
which may be consistent with the measurements. In this context we must ensure that s(μ) is possibly in [a,b], and we thus
define the approximate admissible region as

Ainv
N = {

μ ∈ D
∣∣ [

s−
N (μ), s+

N (μ)
] ∩ [a,b] �= ∅}

. (4)

From (1) and (2) it follows that A ⊆ Ainv
N , that is, all solutions μ contained in A are also in Ainv

N . Therefore, no possible
solutions to the inverse problem are errantly eliminated due to the RB approximation. Our formulation thus accommodates
experimental error and uncertainty (within our model assumptions).
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Fig. 1. Snapshots (a)–(d) of the level curve at different values of the artificial evolution time t , and (e) the level curve at steady state (with Ades
N in gray),

plotted with respect to the frequency ω (x-axis) and anisotropic property ρ (y-axis).

3. Level set method in parameter space

The level set method, introduced in [5], is a popular method for tracking interfaces in arbitrary dimensions. The method
hinges upon the representation of (say) a curve Γ ∈ R

2 as the zero contour of the level set function ϕ(x, t) ∈ R
3, i.e.,

Γ (t) = {x | ϕ(x, t) = 0}, where ϕ(x, t) satisfies a Hamilton–Jacobi equation of the form ϕt(x, t) = v(x, t)|∇ϕ(x, t)|. Here, t is
an artificial evolution time and v(x, t) is the speed function of the zero level set in the normal direction. It is known that
the method can readily handle nonconvex and multiply connected regions, topological changes, and extends to arbitrary
dimensions.

Our proposed method is based on the following key observation: we consider the boundary of the admissible region
as an (initially) unknown interface in parameter space. We thus introduce a level set function φ(μ, t) in parameter space
μ ∈ D ⊂ R

P and initialize φ(μ, t = 0) as the signed distance function from the boundary of D. We then evolve the zero level
set Γ (t) = {μ | φ(μ, t) = 0}, where φ(μ, t) satisfies φt(μ, t) = v(μ)|∇φ(μ, t)|, and choose an appropriate speed function
v(μ) such that the zero contour of the steady-state solution of φ(μ, t) is equivalent to the boundary of the admissible
regions Ades,inv

N .
We thus need to set up a parameter dependent speed function v(μ) such that v(μ) = 0 if μ lies on the boundary

∂Ades,inv
N , v(μ) > 0 if μ ∈ Ades,inv

N , and v(μ) < 0 if μ /∈ Ades,inv
N . Returning to the design and inverse problems discussed in

the last section, we define the associated speed functions

vdes(μ) = min
[
b − s+

N (μ), s−
N (μ) − a

]
and v inv(μ) = min

[
s+

N (μ) − a,b − s−
N (μ)

]
, (5)

respectively. It is easily confirmed that the conditions on the sign of v(μ) are satisfied.
By initializing the zero level set on the boundary of D we ensure that we can detect multiply connected regions; we

would not, however, detect the hole in a “donut” shaped region. More elaborate initializations, such as multiple circular
“seeds” in D, are of course also possible. Finally, we note that our approach can also directly be applied to detect the
possibility region in a frequentistic uncertainty framework [3].

4. Numerical results

For our design problem, we consider a vibrating membrane where the displacement y is governed by the damped
Helmholtz equation; the output of interest is the average deflection. In the framework of Section 1, we have a(v, w;μ) =∫
Ω

∂ w
∂x1

∂v
∂x1

+ ρ ∂ w
∂x2

∂v
∂x2

+ (iεω − ω2)
∫
Ω

w v , f (v) = ∫
Ω

v(sin(πx1) sin(πx2) + sin(πx1) sin(3πx2) + sin(3πx1) sin(πx2)), and

�(v) = ∫
Ω

v . Here, Ω =]0,1[2 is the domain, Ye ≡ {v = vR + iv I | vR ∈ H1
0(Ω), v I ∈ H1

0(Ω)} is a complex Hilbert space,
and v denotes the complex conjugate of v . Furthermore, ε = 0.5 is the damping constant, and the parameter is given by
μ = (ω,ρ) ∈ D = [0.5,2.0] × [3.0,13.0], where ω is the frequency and ρ is a material property. The FE space Y , obtained
from piecewise linear triangular elements, has dimension N = 3970. We generate an RB approximation of dimension N = 20
where the maximum relative output bound is less than 3%.

We seek Ades
N given by (3) with a = 0.09, and b = 1.00. Given the RB approximation, we introduce a 200×200 parameter

grid in D, initialize the zero level set on the boundary of D and define vdes(μ) as in (5). Figs. 1(a)–(d) show snapshots of
Γ (t) at four values of the artificial time. Fig. 1(e) shows Γ at steady state; the region in gray indicates Ades

N . The toolbox [4]
was used for the level set calculation.

For our inverse problem, we consider the transient thermal nondestructive analysis of a fiber-reinforced polymer (FRP)
bonded to a concrete slab (Fig. 2). The aim is to detect and characterize delaminations occurring at the FRP–concrete
interface. Given measurements at various points in time on the surface, we thus need to characterize the delamination
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Fig. 2. Delamination sketch. Fig. 3. Admissible regions Ainv
N .

width w given an uncertainty in the conductivity ratio, κ , of the FRP and concrete. For a detailed problem description and
numerical results of the RB approximation see [1].

Our parameter is μ = (w/2, κ) ∈ D ≡ [1,10]× [0.4,1.8]. We generate noisy measurements for the (unknown) parameter
μ∗ = (4,1.2): we solve the truth approximation s(μ∗, tk) and then define a(tk) = s(μ∗, tk)−εexpsmax and b(tk) = s(μ∗, tk)+
εexpsmax, where εexp is the experimental error and smax = max1�k�K s(μ∗, tk). We solve the level set equation on a grid of
size 200 × 100 in D. Fig. 3 shows the boundary of Ainv

N for εexp = 2%, 5%. As expected Ainv
N increases with εexp and we

observe that the corners are well defined.
This work shows that the admissible regions for design and inverse problems can be successfully constructed by com-

bining the certified RB method with the level set framework. For our proof of concept, we used a regular grid in parameter
space for the level set evolution. However, more efficient implementations using the narrow band approach and adaptive
mesh refinement techniques would certainly decrease the number of required input–output evaluations, and thus increase
the efficiency of the method.
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