

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

(1.1)

www.sciencedirect.com

Mathematical Problems in Mechanics

An intrinsic approach and a notion of polyconvexity for nonlinearly elastic plates

Une approche intrinsèque et une notion de polyconvexité pour les plaques non linéairement élastiques

Philippe G. Ciarlet^a, Sorin Mardare^b

^a Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong

^b Laboratoire de mathématiques Raphaël-Salem, université de Rouen, avenue de l'université, 76801 Saint-Etienne-du-Rouvray, France

ARTICLE INFO

Article history: Received and accepted 31 October 2011 Available online 16 November 2011

Presented by Philippe G. Ciarlet

ABSTRACT

Let ω be a domain in \mathbb{R}^2 . The classical approach to the Neumann problem for a nonlinearly elastic plate consists in seeking a displacement field $\boldsymbol{\eta} = (\eta_i) \in \boldsymbol{V}(\omega) = H^1(\omega) \times H^1(\omega) \times H^2(\omega)$ that minimizes a non-quadratic functional over $\boldsymbol{V}(\omega)$. We show that this problem can be recast as a minimization problem in terms of the new unknowns $E_{\alpha\beta} = \frac{1}{2}(\partial_{\alpha}\eta_{\beta} + \partial_{\beta}\eta_{\alpha} + \partial_{\alpha}\eta_{3}\partial_{\beta}\eta_{3}) \in L^2(\omega)$ and $F_{\alpha\beta} = \partial_{\alpha\beta}\eta_3 \in L^2(\omega)$ and that this problem has a solution in a manifold of symmetric matrices $\boldsymbol{E} = (E_{\alpha\beta})$ and $\boldsymbol{F} = (F_{\alpha\beta})$ whose components $E_{\alpha\beta} \in L^2(\omega)$ and $F_{\alpha\beta} \in L^2(\omega)$ satisfy nonlinear compatibility conditions of Saint-Venant type. We also show that such an "intrinsic approach" naturally leads to a new definition of polyconvexity.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soit ω un domaine de \mathbb{R}^2 . L'approche classique du problème de Neumann pour une plaque non linéairement élastique consiste à chercher un champ de déplacements $\boldsymbol{\eta} = (\eta_i) \in$ $\boldsymbol{V}(\omega) = H^1(\omega) \times H^1(\omega) \times H^2(\omega)$ qui minimise une fonctionnelle non quadratique sur $\boldsymbol{V}(\omega)$. Nous montrons que ce problème peut être ré-écrit comme un problème de minimisation en termes des nouvelles inconnues $E_{\alpha\beta} = \frac{1}{2}(\partial_{\alpha}\eta_{\beta} + \partial_{\beta}\eta_{\alpha} + \partial_{\alpha}\eta_{3}\partial_{\beta}\eta_{3}) \in L^2(\omega)$ et $F_{\alpha\beta} =$ $\partial_{\alpha\beta}\eta_3 \in L^2(\omega)$ et que ce problème a une solution dans une variété de matrices symétriques $\boldsymbol{E} = (E_{\alpha\beta})$ et $\boldsymbol{F} = (F_{\alpha\beta})$ dont les composantes $E_{\alpha\beta} \in L^2(\omega)$ et $F_{\alpha\beta} \in L^2(\omega)$ satisfont des conditions non linéaires de compatibilité du type de Saint-Venant. Nous montrons également qu'une telle «approche intrinsèque» conduit naturellement à une nouvelle définition de polyconvexité.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. The classical approach to the Neumann problem for a nonlinearly elastic plate

This Note is a sequel to the Note [3], to which we refer for the notations and definitions not recalled here. Let ω be a domain in \mathbb{R}^2 and let

$$\mathbf{V}(\omega) := H^1(\omega) \times H^1(\omega) \times H^2(\omega).$$

E-mail addresses: mapgc@cityu.edu.hk (P.G. Ciarlet), sorin.mardare@univ-rouen.fr (S. Mardare).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter C 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2011.11.001

In the classical Kirchhoff-von Kármán-Love theory, the *Neumann problem for a nonlinearly elastic plate* with middle surface $\bar{\omega}$ consists in finding a vector field $\boldsymbol{\zeta} = (\zeta_i) \in \boldsymbol{V}(\omega)$ (the displacement vector field of $\bar{\omega}$) that minimizes over the space $\boldsymbol{V}(\omega)$ the functional $J : \boldsymbol{V}(\omega) \to \mathbb{R}$ defined for each $\boldsymbol{\eta} = (\eta_i) \in \boldsymbol{V}(\omega)$ by

$$J(\boldsymbol{\eta}) := \frac{1}{2} \int_{\omega} \left\{ \frac{\varepsilon}{4} a_{\alpha\beta\sigma\tau} (\partial_{\sigma} \eta_{\tau} + \partial_{\tau} \eta_{\sigma} + \partial_{\sigma} \eta_{3} \partial_{\tau} \eta_{3}) (\partial_{\alpha} \eta_{\beta} + \partial_{\beta} \eta_{\alpha} + \partial_{\alpha} \eta_{3} \partial_{\beta} \eta_{3}) + \frac{\varepsilon^{3}}{3} a_{\alpha\beta\sigma\tau} \partial_{\sigma\tau} \eta_{3} \partial_{\alpha\beta} \eta_{3} \right\} d\omega - L(\boldsymbol{\eta}),$$

$$(1.2)$$

where

$$L(\boldsymbol{\eta}) := \int_{\omega} p_i \eta_i \, \mathrm{d}\omega - \int_{\omega} q_\alpha \partial_\alpha \eta_3 \, \mathrm{d}\omega.$$
(1.3)

In (1.2), $\varepsilon > 0$ denotes half of the thickness of the plate, and the constants $a_{\alpha\beta\sigma\tau}$, which denote the components of the *two-dimensional elasticity tensor* of the plate, satisfy

$$a_{\alpha\beta\sigma\tau}t_{\sigma\tau}t_{\alpha\beta} \ge 4\mu \sum_{\alpha,\beta} |t_{\alpha\beta}|^2 \quad \text{for all } (t_{\alpha\beta}) \in \mathbb{S}^2, \tag{1.4}$$

for some constant $\mu > 0$ (one of the Lamé constants of the constituting material of the plate, assumed to be homogeneous and isotropic; the reference configuration $\bar{\omega} \times [-\varepsilon, \varepsilon]$ of the plate is assumed to be a natural state). In the linear form $L : \mathbf{V}(\omega) \to \mathbb{R}$ defined by (1.2), the functions $p_i \in L^2(\omega)$ and $q_\alpha \in L^2(\omega)$ are given (they represent the resultants of the forces that are applied to the plate).

The objective of this Note is to establish the *existence* of a solution to this minimization problem, by means of a reformulation of this minimization problem in terms of the *new unknowns*

$$E_{\alpha\beta} := \frac{1}{2} (\partial_{\alpha}\eta_{\beta} + \partial_{\beta}\eta_{\alpha} + \partial_{\alpha}\eta_{3}\partial_{\beta}\eta_{3}) \in L^{2}(\omega) \quad \text{and} \quad F_{\alpha\beta} := \partial_{\alpha\beta}\eta_{3} \in L^{2}(\omega), \quad \alpha, \beta = 1, 2,$$
(1.5)

i.e., by means of an *intrinsic approach*.

Complete proofs will be found in [4].

2. Necessary conditions for the existence of a minimizer

If the plate is *linearly elastic*, i.e., if the nonlinear functions $E_{\alpha\beta}$ defined in (1.4) are replaced by their linear parts

$$e_{\alpha\beta} := \frac{1}{2} (\partial_{\alpha} \eta_{\beta} + \partial_{\beta} \eta_{\alpha}), \quad \alpha, \beta = 1, 2,$$
(2.1)

the functional *J* of (1.2) is replaced by a *quadratic functional*. In this case, it is clear that a necessary (and in effect sufficient) condition for the existence of a minimizer of this quadratic functional over the space $V(\omega)$ of (1.1) is that the applied forces be such that $L(\eta) = 0$ for all the vector fields $\eta = (\eta_i) \in V(\omega)$ that satisfy

$$\frac{1}{2}(\partial_{\alpha}\eta_{\beta} + \partial_{\beta}\eta_{\alpha}) = 0 \quad \text{and} \quad \partial_{\alpha\beta}\eta_{3} = 0 \quad \text{in }\omega.$$
(2.2)

It is therefore natural that we likewise begin by identifying *necessary conditions* for the existence of a minimizer of the functional *J* of (1.2) over the space $\mathbf{V}(\omega)$ defined in (1.1) (like in the linear case, these conditions will eventually turn out to be also sufficient when the norms $\|p_{\alpha}\|_{L^{2}(\omega)}$ are small enough; cf. Theorem 4.1).

In what follows, \mathbb{M}^2 , \mathbb{S}^2 , \mathbb{S}^2_{\geq} , and $\mathbb{S}^2_{>}$ respectively designate the set of all 2 × 2 real matrices, and of all symmetric, non-negative definite symmetric, and positive-definite symmetric, 2 × 2 real matrices.

Theorem 2.1. In order that

1

$$\inf \boldsymbol{\eta} \in \boldsymbol{V}(\omega) J(\boldsymbol{\eta}) > -\infty, \tag{2.3}$$

it is necessary that the vector fields

$$\boldsymbol{p} = (\boldsymbol{p}_H, p_3) := (p_i) \in \boldsymbol{L}^2(\omega) \text{ and } \boldsymbol{q}_H := (q_\alpha) \in \boldsymbol{L}^2(\omega)$$

satisfy the following relations. First,

$$\int_{\omega} \mathbf{p}(\mathbf{y}) \,\mathrm{d}\omega = \mathbf{0}. \tag{2.4}$$

Second, define the matrix

$$\boldsymbol{A}(\boldsymbol{p}_{H}) := \int_{\omega} \boldsymbol{p}_{H}(\boldsymbol{y}) \boldsymbol{y}^{T} \, \mathrm{d}\boldsymbol{\omega} \in \mathbb{M}^{2}.$$
(2.5)

Then one of the following three mutually exclusive conditions is satisfied. If $A(\mathbf{p}_H) = \mathbf{0}$, then

$$\boldsymbol{p}_{H} = \boldsymbol{0} \text{ a.e. in } \omega \quad \text{and} \quad \int_{\omega} \left(p_{3} \boldsymbol{y} - \boldsymbol{q}_{H}(\boldsymbol{y}) \right) \mathrm{d}\omega = \boldsymbol{0}.$$
 (2.6)

If Ker $A(p_H) \neq \{0\}$, then

$$\boldsymbol{A}(\boldsymbol{p}_{H}) \in \mathbb{S}^{2}_{\geq}, \, \boldsymbol{p}_{H} \in \left(\operatorname{Ker} \boldsymbol{A}(\boldsymbol{p}_{H})\right)^{\perp} a.e. \ in \ \omega \quad and \quad \int_{\omega} \left(p_{3}\boldsymbol{y} - \boldsymbol{q}_{H}(\boldsymbol{y})\right) d\omega \in \left(\operatorname{Ker} \boldsymbol{A}(\boldsymbol{p}_{H})\right)^{\perp} a.e. \ in \ \omega.$$

$$(2.7)$$

If $\mathbf{A}(\mathbf{p}_H) \neq 0$ and Ker $\mathbf{A}(\mathbf{p}_H) = \{\mathbf{0}\}$, then

$$\boldsymbol{A}(\boldsymbol{p}_H) \in \mathbb{S}_{>}^2.$$

Sketch of proof. In [3, Theorem 2.1], we showed that, if two vector fields $\tilde{\eta} = (\tilde{\eta}_H, \tilde{\eta}_3) \in V(\omega)$ and $\eta = (\eta_H, \eta_3) \in V(\omega)$ satisfy

$$\frac{1}{2}(\partial_{\alpha}\tilde{\eta}_{\beta} + \partial_{\beta}\tilde{\eta}_{\alpha} + \partial_{\alpha}\tilde{\eta}_{3}\partial_{\beta}\tilde{\eta}_{3}) = \frac{1}{2}(\partial_{\alpha}\eta_{\beta} + \partial_{\beta}\eta_{\alpha} + \partial_{\alpha}\eta_{3}\partial_{\beta}\eta_{3}) \text{ and } \partial_{\alpha\beta}\tilde{\eta}_{3} = \partial_{\alpha\beta}\eta_{3} \text{ in } L^{2}(\omega),$$

then

.

$$\tilde{\boldsymbol{\eta}}(\boldsymbol{y}) = \boldsymbol{\eta}(\boldsymbol{y}) + \boldsymbol{a} + \boldsymbol{b}\boldsymbol{e} \wedge \boldsymbol{y} - \eta_3(\boldsymbol{y})\boldsymbol{d} + (\boldsymbol{d} \cdot \boldsymbol{y})\boldsymbol{e} - \frac{1}{2}(\boldsymbol{d} \cdot \boldsymbol{y})\boldsymbol{d} \quad \text{for almost all } \boldsymbol{y} \in \boldsymbol{\omega},$$

.

for some $\boldsymbol{a} \in \mathbb{R}^3$, $b \in \mathbb{R}$, and $\boldsymbol{d} \in \mathbb{R}^2$, where $(\boldsymbol{e})_i := \delta_{i3}$. The proof thus amounts to finding necessary and sufficient conditions guaranteeing that the following two conditions simultaneously hold. *First*,

$$\sup\{L(\boldsymbol{a}+b\boldsymbol{e}\wedge\boldsymbol{id});\boldsymbol{a}\in\mathbb{R}^{3},\boldsymbol{b}\in\mathbb{R}\}<+\infty.$$
(2.9)

Second,

$$\sup\{L(\boldsymbol{r}(\boldsymbol{d},\eta_3)); \boldsymbol{d} \in \mathbb{R}^2\} < +\infty \quad \text{for each } \boldsymbol{\eta} \in \boldsymbol{V}(\omega),$$
(2.10)

where

$$\boldsymbol{r}(\boldsymbol{d},\eta_3) := -\eta_3 \boldsymbol{d} + (\boldsymbol{d}\cdot \boldsymbol{i}\boldsymbol{d})\boldsymbol{e} - \frac{1}{2}(\boldsymbol{d}\cdot \boldsymbol{i}\boldsymbol{d})\boldsymbol{d} \in \mathbb{R}^3.$$

Since $\{a + be \land id; a \in \mathbb{R}^3, b \in \mathbb{R}\}$ is a vector space, condition (2.9) is equivalent to

$$L(\boldsymbol{a} + b\boldsymbol{e} \wedge \boldsymbol{id}) = 0$$
 for all $\boldsymbol{a} \in \mathbb{R}^3$ and $b \in \mathbb{R}$.

Since

$$L(\boldsymbol{a} + b\boldsymbol{e} \wedge \boldsymbol{id}) = \int_{\omega} \boldsymbol{p}(\boldsymbol{y}) \cdot \boldsymbol{a} \, \mathrm{d}\omega + b \int_{\omega} (-p_1 y_2 + p_2 y_1) \, \mathrm{d}\omega,$$

it follows that (2.9) is satisfied if and only if

$$\int_{\omega} \boldsymbol{p}(\boldsymbol{y}) \, \mathrm{d}\boldsymbol{\omega} = \boldsymbol{0} \quad \text{and} \quad \boldsymbol{A}(\boldsymbol{p}_H) := \int_{\omega} \boldsymbol{p}_H(\boldsymbol{y}) \boldsymbol{y}^T \, \mathrm{d}\boldsymbol{\omega} \in \mathbb{S}^2.$$
(2.11)

It is easily verified that, for each $\boldsymbol{d} \in \mathbb{R}^2$ and each $\boldsymbol{\eta} \in \boldsymbol{V}(\omega)$,

$$L(\boldsymbol{r}(\boldsymbol{d},\eta_3)) = \boldsymbol{d} \cdot \left(\boldsymbol{s}(\boldsymbol{p},\boldsymbol{q}_H,\eta_3) - \frac{1}{2}\boldsymbol{A}(\boldsymbol{p}_H)\boldsymbol{d}\right),$$
(2.12)

where

$$\boldsymbol{s}(\boldsymbol{p}, \boldsymbol{q}_H, \eta_3) := \int_{\omega} \left(p_3(y) \boldsymbol{y} - \boldsymbol{q}_H(y) - \eta_3(y) \boldsymbol{p}_H(y) \right) d\omega \in \mathbb{R}^2.$$
(2.13)

If $A(\mathbf{p}_H) \neq \mathbf{0}$, assume that there exists a vector $\delta^{\perp} \in (\operatorname{Ker} A(\mathbf{p}_H))^{\perp}$ such that $\delta^{\perp} \cdot A(\mathbf{p}_H)\delta^{\perp} < 0$. Then relations (2.10) cannot hold since

$$\sup_{t\in\mathbb{R}}\left\{t\boldsymbol{\delta}^{\perp}\cdot\boldsymbol{s}(\boldsymbol{p},\boldsymbol{q}_{H},\eta_{3})-\frac{1}{2}t^{2}\boldsymbol{\delta}^{\perp}\cdot\boldsymbol{A}(\boldsymbol{p}_{H})\boldsymbol{\delta}^{\perp}\right\}=+\infty.$$

Therefore, the symmetric matrix $\boldsymbol{A}(\boldsymbol{p}_H)$ is necessarily either positive-definite if it is invertible, or non-negative-definite if it is singular.

If $A(p_H)$ is singular (in which case $A(p_H) \in \mathbb{S}^2_{\geq}$), let $\delta \in \text{Ker } A(p_H)$ be such that $\delta \neq 0$. Expressing that (2.10) must hold in particular for any vector d of the form $d = t\delta$, $t \in \mathbb{R}$, then shows that, for each $\eta \in V(\omega)$, the vector $s(p, q_H, \eta_3)$ must be orthogonal to δ . In other words, if $A(p_H)$ is singular, then

$$\boldsymbol{s}(\boldsymbol{p}, \boldsymbol{q}_H, \eta_3) \in \left(\operatorname{Ker} \boldsymbol{A}(\boldsymbol{p}_H)\right)^{\perp} \text{ for each } \boldsymbol{\eta} \in \boldsymbol{V}(\omega).$$
 (2.14)

We now show that, *conversely*, if either $A(p_H) \in \mathbb{S}^2_>$, or $A(p_H) \in \mathbb{S}^2_>$ is singular and relation (2.14) holds, then relation (2.10) holds. First, we note that, if $A(p_H) = 0$, then $s(p, q_H, \eta_3) = 0$ for each $\eta \in V(\omega)$ by (2.12); hence $L(r(d, \eta_3)) = 0$ for each $\eta \in V(\omega)$ and thus (2.10) holds in this case. Second, assume that $A(p_H) \neq 0$. Given any vector $d \in \mathbb{R}^2$, let $d = \delta + \delta^{\perp}$ with $\delta \in \operatorname{Ker} A(p_H)$ and $\delta^{\perp} \in (\operatorname{Ker} A(p_H))^{\perp}$. Then

$$L(\boldsymbol{r}(\boldsymbol{d},\eta_3)) = \boldsymbol{\delta}^{\perp} \cdot \boldsymbol{s}(\boldsymbol{p},\boldsymbol{q}_H,\eta_3) - \frac{1}{2}\boldsymbol{\delta}^{\perp} \cdot (\boldsymbol{A}(\boldsymbol{p}_H)\boldsymbol{\delta}^{\perp}) \leqslant |\boldsymbol{s}(\boldsymbol{p},\boldsymbol{q}_H,\eta_3)| |\boldsymbol{\delta}^{\perp}| - \frac{\lambda}{2} |\boldsymbol{\delta}^{\perp}|^2,$$

where $|\cdot|$ denotes the Euclidean norm and $\lambda > 0$ denotes the smallest nonzero eigenvalue of the matrix $A(\mathbf{p}_H)$. Hence $\sup_{\mathbf{d} \in \mathbb{R}^2} L(\mathbf{r}(\mathbf{d}, \eta_3)) < +\infty$ for each $\eta \in \mathbf{V}(\omega)$, i.e., (2.10) also holds in this case.

The specific form of the vector $\mathbf{s}(\mathbf{p}, \mathbf{q}_H, \eta_3)$ (cf. (2.13)) then implies that relations (2.14) hold for all $\boldsymbol{\eta} \in \mathbf{V}(\omega)$ if and only if $\int_{\omega} (p_3 \mathbf{y} - \mathbf{q}_H(\mathbf{y})) d\omega \in (\operatorname{Ker} \mathbf{A}(\mathbf{p}_H))^{\perp}$ and $\mathbf{p}_H \in (\operatorname{Ker} \mathbf{A}(\mathbf{p}_H))^{\perp}$ a.e. in ω (hence $\mathbf{p}_H = \mathbf{0}$ a.e. in ω if $\mathbf{A}(\mathbf{p}_H) = \mathbf{0}$). This completes the proof. \Box

3. The intrinsic approach to the Neumann problem for a nonlinearly elastic plate

We now recast the minimization problem $\inf_{\eta \in V(\omega)} J(\eta)$, where the space $V(\omega)$ and the functional $J : V(\omega) \to \mathbb{R}$ are defined in (1.1)–(1.2), as a minimization problem in terms of the new unknowns $E_{\alpha\beta} \in L^2(\omega)$ and $F_{\alpha\beta} \in L^2(\omega)$ defined in (1.5). Crucial to this objective is the following result from [3]:

Theorem 3.1. Let ω be a simply-connected domain in \mathbb{R}^2 . Define the space

$$\mathbb{E}(\omega) := \left\{ (\boldsymbol{E}, \boldsymbol{F}) \in \mathbb{L}^{2}(\omega) \times \mathbb{L}^{2}(\omega); \, \partial_{\sigma\tau} E_{\alpha\beta} + \partial_{\alpha\beta} E_{\sigma\tau} - \partial_{\alpha\sigma} E_{\beta\tau} - \partial_{\beta\tau} E_{\alpha\sigma} = F_{\alpha\sigma} F_{\beta\tau} - F_{\alpha\beta} F_{\sigma\tau} \text{ in } H^{-2}(\omega) \\ and \, \partial_{\sigma} F_{\alpha\beta} = \partial_{\beta} F_{\alpha\sigma} \text{ in } H^{-1}(\omega) \right\}.$$
(3.1)

Then, given any $(\mathbf{E}, \mathbf{F}) \in \mathbb{E}(\omega)$, there exists a unique vector field

$$\boldsymbol{\eta} \in \boldsymbol{V}^{0}(\omega) := \left\{ \boldsymbol{\eta} = (\eta_{i}) \in \boldsymbol{V}(\omega); \int_{\omega} \boldsymbol{\eta} \, \mathrm{d}\omega = \boldsymbol{0}, \int_{\omega} \partial_{\alpha} \eta_{3} \, \mathrm{d}\omega = \boldsymbol{0}, \int_{\omega} (\partial_{1} \eta_{2} - \partial_{2} \eta_{1}) \, \mathrm{d}\omega = \boldsymbol{0} \right\}$$
(3.2)

that satisfies

$$\frac{1}{2}(\partial_{\alpha}\eta_{\beta} + \partial_{\beta}\eta_{\alpha} + \partial_{\alpha}\eta_{3}\partial_{\beta}\eta_{3}) = E_{\alpha\beta} \quad \text{in } L^{2}(\omega),$$
(3.3)

$$\partial_{\alpha\beta}\eta_3 = F_{\alpha\beta} \quad \text{in } L^2(\omega). \tag{3.4}$$

Some care must be exercised in applying this result however: Given a vector field $\eta \in \mathbf{V}(\omega)$, the number $J(\eta)$ is *not* defined by the two fields $\mathbf{E} = (E_{\alpha\beta})$ and $\mathbf{F} = (F_{\alpha\beta})$ defined in (1.5), *because of the linear form L of* (1.3). As shown in the next theorem (whose proof relies on simple computations), the remedy consists in introducing a vector δ^{\perp} in the subspace $(\mathbf{Ker } A(\mathbf{p}_H))^{\perp}$ of \mathbb{R}^2 as an *additional variable* (the matrix $A(\mathbf{p}_H) \in \mathbb{S}^2_{\geq}$ is defined in (2.5)).

Theorem 3.2. Given any $\eta \in V(\omega)$, let $\eta^0 \in V^0(\omega)$ be the unique vector field that satisfies (Theorem 3.1)

$$\frac{1}{2} \left(\partial_{\alpha} \eta^{0}_{\beta} + \partial_{\beta} \eta^{0}_{\alpha} + \partial_{\alpha} \eta^{0}_{3} \partial_{\beta} \eta^{0}_{3} \right) = \frac{1}{2} \left(\partial_{\alpha} \eta_{\beta} + \partial_{\beta} \eta_{\alpha} + \partial_{\alpha} \eta_{3} \partial_{\beta} \eta_{3} \right) \quad and \quad \partial_{\alpha\beta} \eta^{0}_{3} = \partial_{\alpha\beta} \eta_{3} \quad in \ L^{2}(\omega), \tag{3.5}$$

so that (cf. [3, Theorem 2.1]),

$$\boldsymbol{\eta} = \boldsymbol{\eta}_0 + \boldsymbol{a} + \boldsymbol{b}\boldsymbol{e} \wedge \boldsymbol{i}\boldsymbol{d} - \boldsymbol{\eta}_3\boldsymbol{d} + (\boldsymbol{d} \cdot \boldsymbol{i}\boldsymbol{d})\boldsymbol{e} - \frac{1}{2}(\boldsymbol{d} \cdot \boldsymbol{i}\boldsymbol{d})\boldsymbol{d}$$
(3.6)

for some $\mathbf{a} \in \mathbb{R}^3$, $b \in \mathbb{R}$, and $\mathbf{d} \in \mathbb{R}^2$. For each $\mathbf{d} \in \mathbb{R}^2$ and each $\eta_3 \in H^2(\omega)$, let

$$\mathbf{r}(\mathbf{d},\eta_3) := -\eta_3 \mathbf{d} + (\mathbf{d} \cdot i\mathbf{d})\mathbf{e} - \frac{1}{2}(\mathbf{d} \cdot i\mathbf{d})\mathbf{d}.$$
(3.7)

Then

$$J(\boldsymbol{\eta}) = J(\boldsymbol{\eta}^0) - L(\boldsymbol{r}(\boldsymbol{\delta}^{\perp}, \boldsymbol{\eta}_3^0)),$$
(3.8)

where, for each $\mathbf{d} \in \mathbb{R}^2$, the vector δ^{\perp} denotes the projection of \mathbf{d} onto the subspace $(\mathbf{Ker } \mathbf{A}(\mathbf{p}_H))^{\perp}$ of \mathbb{R}^2 .

Let the functional $\mathcal{J}: \mathbb{E}(\omega) \times (\operatorname{Ker} A(p_H))^{\perp} \to \mathbb{R}$ be defined for each $((E, F), \delta^{\perp}) \in \mathbb{E}(\omega) \times (\operatorname{Ker} A(p_H))^{\perp}$ by

$$\mathcal{J}((\boldsymbol{E},\boldsymbol{F}),\boldsymbol{\delta}^{\perp}) := \frac{1}{2} \int_{\omega} \left\{ \varepsilon a_{\alpha\beta\sigma\tau} E_{\sigma\tau} E_{\alpha\beta} + \frac{\varepsilon^3}{3} a_{\alpha\beta\sigma\tau} F_{\sigma\tau} F_{\alpha\beta} \right\} d\omega - L(\boldsymbol{\Phi}(\boldsymbol{E},\boldsymbol{F})) - L(\boldsymbol{r}(\boldsymbol{\delta}^{\perp},\boldsymbol{\Phi}_3(\boldsymbol{E},\boldsymbol{F}))),$$
(3.9)

where $\boldsymbol{\Phi} = (\boldsymbol{\Phi}_i) : \mathbb{E}(\omega) \to \boldsymbol{V}^0(\omega)$ is the nonlinear bijection defined for each $(\boldsymbol{E}, \boldsymbol{F}) \in \mathbb{E}(\omega)$ by $\boldsymbol{\Phi}(\boldsymbol{E}, \boldsymbol{F}) := \boldsymbol{\eta}^0$, where $\boldsymbol{\eta}^0$ is the unique element in the space $\boldsymbol{V}^0(\omega)$ that satisfies Eqs. (3.3)–(3.4) (Theorem 3.1). Then the *intrinsic approach to the Neumann* problem for a nonlinearly elastic plate consists in minimizing the function \mathcal{J} of (3.9) over the set $\mathbb{E}(\omega) \times (\mathbf{Ker A}(\boldsymbol{p}_H))^{\perp}$.

Note that, expressed in terms of $\eta^0 = \boldsymbol{\Phi}(\boldsymbol{E}, \boldsymbol{F})$, the last two terms in (3.9) respectively become:

$$L(\boldsymbol{\Phi}(\boldsymbol{E},\boldsymbol{F})) = \int_{\omega} \boldsymbol{p} \cdot \boldsymbol{\eta}^{0} \,\mathrm{d}\omega - \int_{\omega} \boldsymbol{q}_{H} \cdot \nabla \eta_{3}^{0} \,\mathrm{d}\omega, \qquad (3.10)$$

$$L(\boldsymbol{r}(\boldsymbol{\delta}^{\perp}, \boldsymbol{\Phi}_{3}(\boldsymbol{E}, \boldsymbol{F}))) = \boldsymbol{\delta}^{\perp} \cdot \int_{\omega} \left(p_{3}\boldsymbol{y} - \boldsymbol{q}_{H} - \eta_{3}^{0}\boldsymbol{p}_{H} \right) d\omega - \frac{1}{2}\boldsymbol{\delta}^{\perp} \cdot \left(\boldsymbol{A}(\boldsymbol{p}_{H})\boldsymbol{\delta}^{\perp} \right).$$
(3.11)

Note that the additional variable δ^{\perp} vanishes when $A(\mathbf{p}_H) = \mathbf{0}$, in which case the functional \mathcal{J} of (3.9) reduces to its first two terms. But, even when $A(\mathbf{p}_H) \neq \mathbf{0}$, it is still possible to define a minimization problem solely in terms of the variable $(\mathbf{E}, \mathbf{F}) \in \mathbb{E}(\omega)$. To this end, notice that, for a given $(\mathbf{E}, \mathbf{F}) \in \mathbb{E}(\omega)$, or equivalently for a given $\eta^0 \in \mathbf{V}^0(\omega)$, there exists a unique $(\mathbf{Ker } A(\mathbf{p}_H))^{\perp}$ that minimizes the functional defined by

$$\delta^{\perp} \in \left(\operatorname{Ker} A(p_H)\right)^{\perp} \subset \mathbb{R}^2 \quad \rightarrow \quad \mathcal{J}\left((F, F), \delta^{\perp}\right) \in \mathbb{R},$$

since this quadratic functional is positive-definite in view of (3.11). Hence it is equivalent to minimize the functional \mathcal{J} : $\mathbb{E}(\omega) \to \mathbb{R}$ defined for each $(\mathbf{E}, \mathbf{F}) \in \mathbb{E}(\omega)$ by

$$\tilde{\mathcal{J}}(\boldsymbol{E},\boldsymbol{F}) := \inf_{\boldsymbol{\delta}^{\perp} \in (\operatorname{Ker} \boldsymbol{A}(\boldsymbol{p}_H))^{\perp}} \mathcal{J}((\boldsymbol{E},\boldsymbol{F}),\boldsymbol{\delta}^{\perp}).$$

4. Existence theorem

The next result constitutes the main result of this Note.

Theorem 4.1. Assume that the vector fields $\mathbf{p} \in \mathbf{L}^2(\omega)$ and $\mathbf{q}_H \in \mathbf{L}^2(\omega)$ satisfy condition (2.4) and one of the conditions (2.6), (2.7), or (2.8). Let the functional $\mathcal{J} : \mathbb{E}(\omega) \times (\operatorname{Ker} A(\mathbf{p}_H))^{\perp} \to \mathbb{R}$ be defined as in (3.9). Then, if the norm $\|\mathbf{p}_H\|_{L^2(\omega)}$ is small enough, there exists $((\bar{\mathbf{E}}, \bar{\mathbf{F}}), \bar{\boldsymbol{\delta}}^{\perp}) \in \mathbb{E}(\omega) \times (\operatorname{Ker} A(\mathbf{p}_H))^{\perp}$ such that

$$\mathcal{J}((\bar{\boldsymbol{E}},\bar{\boldsymbol{F}}),\bar{\boldsymbol{\delta}}^{\perp}) = \inf\{\mathcal{J}((\boldsymbol{E},\boldsymbol{F}),\boldsymbol{\delta}^{\perp}); ((\boldsymbol{E},\boldsymbol{F}),\boldsymbol{\delta}^{\perp}) \in \mathbb{E}(\omega) \times (\operatorname{Ker}\boldsymbol{A}(\boldsymbol{p}_{H}))^{\perp}\}.$$
(4.1)

Sketch of proof. (i) In [3, Theorem 3.1], it was shown that $\mathbb{E}(\omega)$ is sequentially weakly closed in $\mathbb{L}^2(\omega) \times \mathbb{L}^2(\omega)$; hence *the* set $\mathbb{E}(\omega) \times (\text{Ker } A(\mathbf{p}_H))^{\perp}$ is sequentially weakly closed in $\mathbb{L}^2(\omega) \times \mathbb{L}^2(\omega) \times \mathbb{R}^2$.

(ii) The functional \mathcal{J} is sequentially weakly lower semi-continuous on the set $\mathbb{E}(\omega) \times (\operatorname{Ker} A(p_H))^{\perp}$.

This property clearly holds for the functional defined by the first term in (3.9). That the mapping Φ maps weakly convergent sequences in $\mathbb{E}(\omega)$ into strongly convergent sequences in $V^0(\omega)$ (cf. Theorem 3.1 in [3]; in fact, weak convergence would suffice here) then implies that the functionals defined by the last two terms in (3.9) (re-expressed for this purpose as in (3.10)–(3.11)) are also sequentially weakly lower semi-continuous (recall that the variable δ^{\perp} varies in a subspace of \mathbb{R}^2).

(iii) The functional is coercive on $\mathbb{E}(\omega) \times (\text{Ker } A(p_H))^{\perp}$ if the norm $\|p_H\|_{L^2(\omega)}$ is small enough. In what follows, C_1, \ldots, C_6 , denote various constants that are independent of the various functions or vector fields involved in a given inequality, and the same notation $\|\cdot\|$ denotes the norm in the spaces $L^2(\omega)$, $L^2(\omega)$, and $\mathbb{L}^2(\omega)$. Let the vector field $\mathbf{f} \in \mathbf{L}^2(\omega)$ be defined by

 $f(y) := p_3(y)y - q_H(y)$ for almost all $y \in \omega$.

Then, for any $((\boldsymbol{E}, \boldsymbol{F}), \boldsymbol{\delta}^{\perp}) \in \mathbb{E}(\omega) \times (\operatorname{Ker} \boldsymbol{A}(\boldsymbol{p}_{H}))^{\perp}$,

$$\mathcal{J}((\boldsymbol{E},\boldsymbol{F}),\boldsymbol{\delta}^{\perp}) \geq C_{1} \|\boldsymbol{E}\|^{2} + C_{2} \|\boldsymbol{F}\|^{2} + \frac{\lambda}{2} |\boldsymbol{\delta}^{\perp}|^{2} - \|\boldsymbol{p}_{H}\| \|\boldsymbol{\eta}_{H}^{0}\| - \|\boldsymbol{p}_{3}\| \|\boldsymbol{\eta}_{3}^{0}\| \\ - \|\boldsymbol{q}_{H}\| \|\boldsymbol{\nabla}\boldsymbol{\eta}_{3}^{0}\| - \|\boldsymbol{f}\|_{\boldsymbol{L}^{1}(\omega)} |\boldsymbol{\delta}^{\perp}| - \|\boldsymbol{p}_{H}\| \|\boldsymbol{\eta}_{3}^{0}\| |\boldsymbol{\delta}^{\perp}|,$$

where $\lambda > 0$ denotes the smallest nonzero eigenvalue of the matrix $A(p_H) \in \mathbb{S}^2_{>}$ (recall that $\delta^{\perp} = \mathbf{0}$ if $A(p_H) = \mathbf{0}$). Thanks to the relations that led to the nonlinear Korn inequality established in [3] (cf. Eqs. (3.2)-(3.5) in [3]).

$$\|\eta_{3}^{0}\|_{H^{2}(\omega)} \leq C_{3} \|\nabla^{2} \eta_{3}^{0}\|$$
 and $\|\eta_{H}^{0}\|_{H^{1}(\omega)} \leq C_{4} \left(\|\nabla_{s} \eta_{H}^{0} + \frac{1}{2} \nabla \eta_{3}^{0} \nabla \eta_{3}^{0^{T}} \| + \|\nabla^{2} \eta_{3}\|^{2} \right).$

Therefore.

$$\mathcal{J}((\boldsymbol{E},\boldsymbol{F}),\boldsymbol{\delta}^{\perp}) \geq C_{1} \|\boldsymbol{E}\|^{2} + (C_{2} - (C_{5} + C_{6}/2)\|\boldsymbol{p}_{H}\|)\|\boldsymbol{F}\|^{2} + (\lambda/2 - C_{6}/2\|\boldsymbol{p}_{H}\|)|\boldsymbol{\delta}^{\perp}|^{2} - C_{5} \|\boldsymbol{p}_{H}\|\|\boldsymbol{E}\| - C_{6}(\|\boldsymbol{p}_{3}\| + \|\boldsymbol{q}_{H}\|)\|\boldsymbol{F}\| - \|\boldsymbol{f}\|_{\boldsymbol{L}^{1}(\omega)}|\boldsymbol{\delta}^{\perp}|.$$

Hence \mathcal{J} is coercive on $\mathbb{E}(\omega) \times (\operatorname{Ker} A(p_H))^{\perp}$ if $||p_H||$ is small enough. \Box

Note that, thanks to Theorem 3.2, the above theorem also establishes the existence of a minimizer of the functional [of (1.2) in the space $V(\omega)$ of (1.1), thus extending to the pure Neumann problem the existence result of [2] for the Dirichlet-Neumann (in which case the norm $\|\mathbf{p}_H\|_{L^2(\omega)}$ was also assumed to be small enough).

5. A definition of polyconvexity

Inspired by the definition proposed by John Ball in his landmark paper [1], we now propose a definition of *polyconvexity* that is directly adapted to the problem considered in this Note (this definition can be extended to more general situations; cf. [4]). For simplicity, we assume here that $A(p_H) = 0$.

Let the subset $\mathbb{E}(\omega)$ of $\mathbb{L}^2(\omega) \times \mathbb{L}^2(\omega)$ be defined as in (3.1). Then an integrand $W : \mathbb{E}(\omega) \to \mathbb{R}$ is said to be polyconvex if there exists a *convex* function $\mathbb{W}: \mathbb{L}^{2}(\omega) \times \mathbb{L}^{2}(\omega)$ such that

$$W(\mathbf{E}, \mathbf{F}) = \mathbb{W}(\mathbf{E}, \mathbf{F})$$
 for all $(\mathbf{E}, \mathbf{F}) \in \mathbb{E}(\omega)$.

Clearly, this assumption is satisfied by the integrand appearing in the first term of the functional \mathcal{J} of (3.9).

To further substantiate this definition, it will be proved in [4] that the set $\mathbb{E}(\omega)$ is a manifold of class \mathcal{C}^{∞} in $\mathbb{L}^{2}(\omega) \times \mathbb{L}^{2}(\omega)$ and that the mapping $\Phi^{-1}: V^0(\omega) \to \mathbb{E}(\omega)$ is a \mathcal{C}^{∞} -diffeomorphism, where the space $V^0(\omega)$ and the mapping Φ are defined as in Section 3.

The proof of Theorem 4.1 then shows that this notion is indeed the key to establishing the coerciveness and the sequential weak lower semi-continuity of the functional \mathcal{J} , just like the notion of polyconvexity introduced by John Ball in nonlinear three-dimensional elasticity.

Acknowledgement

The work described in this paper was partially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region [Project No. City U 100709].

References

[1] J. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 (1977) 337-403.

^[2] P.G. Ciarlet, P. Destuynder, A justification of a nonlinear model in plate theory, Comput. Methods Appl. Mech. Engrg. 17/18 (1979) 227-258.

^[3] P.G. Ciarlet, S. Mardare, Nonlinear Saint-Venant compatibility conditions for nonlinearly elastic plates, C. R. Acad. Sci. Paris, Ser. I 349 (23-24) (2011) 1297-1302

^[4] P.G. Ciarlet, S. Mardare, Saint-Venant compatibility conditions and a notion of polyconvexity in nonlinear plate theory, in preparation.