Mathematical Problems in Mechanics

An intrinsic approach and a notion of polyconvexity for nonlinearly elastic plates

Une approche intrinsèque et une notion de polyconvexité pour les plaques non linéairement élastiques

Philippe G. Ciarlet ${ }^{\text {a }}$, Sorin Mardare ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
${ }^{\mathrm{b}}$ Laboratoire de mathématiques Raphaël-Salem, université de Rouen, avenue de l'université, 76801 Saint-Etienne-du-Rouvray, France

A R T I CLE IN F O

Article history:

Received and accepted 31 October 2011
Available online 16 November 2011
Presented by Philippe G. Ciarlet

Abstract

Let ω be a domain in \mathbb{R}^{2}. The classical approach to the Neumann problem for a nonlinearly elastic plate consists in seeking a displacement field $\boldsymbol{\eta}=\left(\eta_{i}\right) \in \boldsymbol{V}(\omega)=$ $H^{1}(\omega) \times H^{1}(\omega) \times H^{2}(\omega)$ that minimizes a non-quadratic functional over $\boldsymbol{V}(\omega)$. We show that this problem can be recast as a minimization problem in terms of the new unknowns $E_{\alpha \beta}=\frac{1}{2}\left(\partial_{\alpha} \eta_{\beta}+\partial_{\beta} \eta_{\alpha}+\partial_{\alpha} \eta_{3} \partial_{\beta} \eta_{3}\right) \in L^{2}(\omega)$ and $F_{\alpha \beta}=\partial_{\alpha \beta} \eta_{3} \in L^{2}(\omega)$ and that this problem has a solution in a manifold of symmetric matrices $\boldsymbol{E}=\left(E_{\alpha \beta}\right)$ and $\boldsymbol{F}=\left(F_{\alpha \beta}\right)$ whose components $E_{\alpha \beta} \in L^{2}(\omega)$ and $F_{\alpha \beta} \in L^{2}(\omega)$ satisfy nonlinear compatibility conditions of Saint-Venant type. We also show that such an "intrinsic approach" naturally leads to a new definition of polyconvexity.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Soit ω un domaine de \mathbb{R}^{2}. L'approche classique du problème de Neumann pour une plaque non linéairement élastique consiste à chercher un champ de déplacements $\eta=\left(\eta_{i}\right) \in$ $\boldsymbol{V}(\omega)=H^{1}(\omega) \times H^{1}(\omega) \times H^{2}(\omega)$ qui minimise une fonctionnelle non quadratique sur $\boldsymbol{V}(\omega)$. Nous montrons que ce problème peut être ré-écrit comme un problème de minimisation en termes des nouvelles inconnues $E_{\alpha \beta}=\frac{1}{2}\left(\partial_{\alpha} \eta_{\beta}+\partial_{\beta} \eta_{\alpha}+\partial_{\alpha} \eta_{3} \partial_{\beta} \eta_{3}\right) \in L^{2}(\omega)$ et $F_{\alpha \beta}=$ $\partial_{\alpha \beta} \eta_{3} \in L^{2}(\omega)$ et que ce problème a une solution dans une variété de matrices symétriques $\boldsymbol{E}=\left(E_{\alpha \beta}\right)$ et $\boldsymbol{F}=\left(F_{\alpha \beta}\right)$ dont les composantes $E_{\alpha \beta} \in L^{2}(\omega)$ et $F_{\alpha \beta} \in L^{2}(\omega)$ satisfont des conditions non linéaires de compatibilité du type de Saint-Venant. Nous montrons également qu'une telle «approche intrinsèque» conduit naturellement à une nouvelle définition de polyconvexité.
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. The classical approach to the Neumann problem for a nonlinearly elastic plate

This Note is a sequel to the Note [3], to which we refer for the notations and definitions not recalled here. Let ω be a domain in \mathbb{R}^{2} and let

$$
\begin{equation*}
\boldsymbol{V}(\omega):=H^{1}(\omega) \times H^{1}(\omega) \times H^{2}(\omega) \tag{1.1}
\end{equation*}
$$

[^0]In the classical Kirchhoff-von Kármán-Love theory, the Neumann problem for a nonlinearly elastic plate with middle surface $\bar{\omega}$ consists in finding a vector field $\zeta=\left(\zeta_{i}\right) \in \boldsymbol{V}(\omega)$ (the displacement vector field of $\bar{\omega}$) that minimizes over the space $\boldsymbol{V}(\omega)$ the functional $J: \boldsymbol{V}(\omega) \rightarrow \mathbb{R}$ defined for each $\boldsymbol{\eta}=\left(\eta_{i}\right) \in \boldsymbol{V}(\omega)$ by

$$
\begin{align*}
J(\boldsymbol{\eta}):= & \frac{1}{2} \int_{\omega}\left\{\frac{\varepsilon}{4} a_{\alpha \beta \sigma \tau}\left(\partial_{\sigma} \eta_{\tau}+\partial_{\tau} \eta_{\sigma}+\partial_{\sigma} \eta_{3} \partial_{\tau} \eta_{3}\right)\left(\partial_{\alpha} \eta_{\beta}+\partial_{\beta} \eta_{\alpha}+\partial_{\alpha} \eta_{3} \partial_{\beta} \eta_{3}\right)\right. \\
& \left.+\frac{\varepsilon^{3}}{3} a_{\alpha \beta \sigma \tau} \partial_{\sigma \tau} \eta_{3} \partial_{\alpha \beta} \eta_{3}\right\} \mathrm{d} \omega-L(\boldsymbol{\eta}), \tag{1.2}
\end{align*}
$$

where

$$
\begin{equation*}
L(\boldsymbol{\eta}):=\int_{\omega} p_{i} \eta_{i} \mathrm{~d} \omega-\int_{\omega} q_{\alpha} \partial_{\alpha} \eta_{3} \mathrm{~d} \omega \tag{1.3}
\end{equation*}
$$

In (1.2), $\varepsilon>0$ denotes half of the thickness of the plate, and the constants $a_{\alpha \beta \sigma \tau}$, which denote the components of the two-dimensional elasticity tensor of the plate, satisfy

$$
\begin{equation*}
a_{\alpha \beta \sigma \tau} t_{\sigma \tau} t_{\alpha \beta} \geqslant 4 \mu \sum_{\alpha, \beta}\left|t_{\alpha \beta}\right|^{2} \quad \text { for all }\left(t_{\alpha \beta}\right) \in \mathbb{S}^{2}, \tag{1.4}
\end{equation*}
$$

for some constant $\mu>0$ (one of the Lamé constants of the constituting material of the plate, assumed to be homogeneous and isotropic; the reference configuration $\bar{\omega} \times[-\varepsilon, \varepsilon]$ of the plate is assumed to be a natural state). In the linear form $L: \boldsymbol{V}(\omega) \rightarrow \mathbb{R}$ defined by (1.2), the functions $p_{i} \in L^{2}(\omega)$ and $q_{\alpha} \in L^{2}(\omega)$ are given (they represent the resultants of the forces that are applied to the plate).

The objective of this Note is to establish the existence of a solution to this minimization problem, by means of a reformulation of this minimization problem in terms of the new unknowns

$$
\begin{equation*}
E_{\alpha \beta}:=\frac{1}{2}\left(\partial_{\alpha} \eta_{\beta}+\partial_{\beta} \eta_{\alpha}+\partial_{\alpha} \eta_{3} \partial_{\beta} \eta_{3}\right) \in L^{2}(\omega) \quad \text { and } \quad F_{\alpha \beta}:=\partial_{\alpha \beta} \eta_{3} \in L^{2}(\omega), \quad \alpha, \beta=1,2 \tag{1.5}
\end{equation*}
$$

i.e., by means of an intrinsic approach.

Complete proofs will be found in [4].

2. Necessary conditions for the existence of a minimizer

If the plate is linearly elastic, i.e., if the nonlinear functions $E_{\alpha \beta}$ defined in (1.4) are replaced by their linear parts

$$
\begin{equation*}
e_{\alpha \beta}:=\frac{1}{2}\left(\partial_{\alpha} \eta_{\beta}+\partial_{\beta} \eta_{\alpha}\right), \quad \alpha, \beta=1,2, \tag{2.1}
\end{equation*}
$$

the functional J of (1.2) is replaced by a quadratic functional. In this case, it is clear that a necessary (and in effect sufficient) condition for the existence of a minimizer of this quadratic functional over the space $\boldsymbol{V}(\omega)$ of (1.1) is that the applied forces be such that $L(\boldsymbol{\eta})=0$ for all the vector fields $\boldsymbol{\eta}=\left(\eta_{i}\right) \in \boldsymbol{V}(\omega)$ that satisfy

$$
\begin{equation*}
\frac{1}{2}\left(\partial_{\alpha} \eta_{\beta}+\partial_{\beta} \eta_{\alpha}\right)=0 \quad \text { and } \quad \partial_{\alpha \beta} \eta_{3}=0 \quad \text { in } \omega . \tag{2.2}
\end{equation*}
$$

It is therefore natural that we likewise begin by identifying necessary conditions for the existence of a minimizer of the functional J of (1.2) over the space $\boldsymbol{V}(\omega)$ defined in (1.1) (like in the linear case, these conditions will eventually turn out to be also sufficient when the norms $\left\|p_{\alpha}\right\|_{L^{2}(\omega)}$ are small enough; cf. Theorem 4.1).

In what follows, $\mathbb{M}^{2}, \mathbb{S}^{2}, \mathbb{S}_{\geqslant}^{2}$, and $\mathbb{S}_{>}^{2}$ respectively designate the set of all 2×2 real matrices, and of all symmetric, non-negative definite symmetric, and positive-definite symmetric, 2×2 real matrices.

Theorem 2.1. In order that

$$
\begin{equation*}
\inf \boldsymbol{\eta} \in \boldsymbol{V}(\omega) J(\boldsymbol{\eta})>-\infty \tag{2.3}
\end{equation*}
$$

it is necessary that the vector fields

$$
\boldsymbol{p}=\left(\boldsymbol{p}_{H}, p_{3}\right):=\left(p_{i}\right) \in \boldsymbol{L}^{2}(\omega) \quad \text { and } \quad \boldsymbol{q}_{H}:=\left(q_{\alpha}\right) \in \mathbf{L}^{2}(\omega)
$$

satisfy the following relations. First,

$$
\begin{equation*}
\int_{\omega} \boldsymbol{p}(y) \mathrm{d} \omega=\mathbf{0} . \tag{2.4}
\end{equation*}
$$

Second, define the matrix

$$
\begin{equation*}
\boldsymbol{A}\left(\boldsymbol{p}_{H}\right):=\int_{\omega} \boldsymbol{p}_{H}(y) \boldsymbol{y}^{T} \mathrm{~d} \omega \in \mathbb{M}^{2} \tag{2.5}
\end{equation*}
$$

Then one of the following three mutually exclusive conditions is satisfied. If $\boldsymbol{A}\left(\boldsymbol{p}_{H}\right)=\mathbf{0}$, then

$$
\begin{equation*}
\boldsymbol{p}_{H}=\mathbf{0} \text { a.e. in } \omega \text { and } \int_{\omega}\left(p_{3} \boldsymbol{y}-\boldsymbol{q}_{H}(y)\right) \mathrm{d} \omega=\mathbf{0} . \tag{2.6}
\end{equation*}
$$

If $\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right) \neq\{\mathbf{0}\}$, then

$$
\begin{equation*}
\boldsymbol{A}\left(\boldsymbol{p}_{H}\right) \in \mathbb{S}_{\geqslant}^{2}, \boldsymbol{p}_{H} \in\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp} \text { a.e. in } \omega \quad \text { and } \int_{\omega}\left(p_{3} \boldsymbol{y}-\boldsymbol{q}_{H}(y)\right) \mathrm{d} \omega \in\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp} \text { a.e. in } \omega \text {. } \tag{2.7}
\end{equation*}
$$

If $\boldsymbol{A}\left(\boldsymbol{p}_{H}\right) \neq 0$ and $\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)=\{\mathbf{0}\}$, then

$$
\begin{equation*}
\boldsymbol{A}\left(\boldsymbol{p}_{H}\right) \in \mathbb{S}_{>}^{2} \tag{2.8}
\end{equation*}
$$

Sketch of proof. In [3, Theorem 2.1], we showed that, if two vector fields $\tilde{\boldsymbol{\eta}}=\left(\tilde{\boldsymbol{\eta}}_{H}, \tilde{\eta}_{3}\right) \in \boldsymbol{V}(\omega)$ and $\boldsymbol{\eta}=\left(\boldsymbol{\eta}_{H}, \eta_{3}\right) \in \boldsymbol{V}(\omega)$ satisfy

$$
\frac{1}{2}\left(\partial_{\alpha} \tilde{\eta}_{\beta}+\partial_{\beta} \tilde{\eta}_{\alpha}+\partial_{\alpha} \tilde{\eta}_{3} \partial_{\beta} \tilde{\eta}_{3}\right)=\frac{1}{2}\left(\partial_{\alpha} \eta_{\beta}+\partial_{\beta} \eta_{\alpha}+\partial_{\alpha} \eta_{3} \partial_{\beta} \eta_{3}\right) \quad \text { and } \quad \partial_{\alpha \beta} \tilde{\eta}_{3}=\partial_{\alpha \beta} \eta_{3} \quad \text { in } L^{2}(\omega)
$$

then

$$
\tilde{\boldsymbol{\eta}}(y)=\eta(y)+\boldsymbol{a}+b \boldsymbol{e} \wedge \boldsymbol{y}-\eta_{3}(y) \boldsymbol{d}+(\boldsymbol{d} \cdot \boldsymbol{y}) \boldsymbol{e}-\frac{1}{2}(\boldsymbol{d} \cdot \boldsymbol{y}) \boldsymbol{d} \quad \text { for almost all } y \in \omega
$$

for some $\boldsymbol{a} \in \mathbb{R}^{3}, b \in \mathbb{R}$, and $\boldsymbol{d} \in \mathbb{R}^{2}$, where $(\boldsymbol{e})_{i}:=\delta_{i 3}$. The proof thus amounts to finding necessary and sufficient conditions guaranteeing that the following two conditions simultaneously hold. First,

$$
\begin{equation*}
\sup \left\{L(\boldsymbol{a}+b \boldsymbol{e} \wedge \boldsymbol{i d}) ; \boldsymbol{a} \in \mathbb{R}^{3}, b \in \mathbb{R}\right\}<+\infty \tag{2.9}
\end{equation*}
$$

Second,

$$
\begin{equation*}
\sup \left\{L\left(\boldsymbol{r}\left(\boldsymbol{d}, \eta_{3}\right)\right) ; \boldsymbol{d} \in \mathbb{R}^{2}\right\}<+\infty \quad \text { for each } \boldsymbol{\eta} \in \boldsymbol{V}(\omega) \tag{2.10}
\end{equation*}
$$

where

$$
\boldsymbol{r}\left(\boldsymbol{d}, \eta_{3}\right):=-\eta_{3} \boldsymbol{d}+(\boldsymbol{d} \cdot \boldsymbol{i d}) \boldsymbol{e}-\frac{1}{2}(\boldsymbol{d} \cdot \boldsymbol{i d}) \boldsymbol{d} \in \mathbb{R}^{3}
$$

Since $\left\{\boldsymbol{a}+b \boldsymbol{e} \wedge \boldsymbol{i d} ; \boldsymbol{a} \in \mathbb{R}^{3}, b \in \mathbb{R}\right\}$ is a vector space, condition (2.9) is equivalent to

$$
L(\boldsymbol{a}+b \boldsymbol{e} \wedge \boldsymbol{i d})=0 \quad \text { for all } \boldsymbol{a} \in \mathbb{R}^{3} \text { and } b \in \mathbb{R}
$$

Since

$$
L(\boldsymbol{a}+b \boldsymbol{e} \wedge \boldsymbol{i d})=\int_{\omega} \boldsymbol{p}(y) \cdot \boldsymbol{a} \mathrm{d} \omega+b \int_{\omega}\left(-p_{1} y_{2}+p_{2} y_{1}\right) \mathrm{d} \omega
$$

it follows that (2.9) is satisfied if and only if

$$
\begin{equation*}
\int_{\omega} \boldsymbol{p}(y) \mathrm{d} \omega=\mathbf{0} \text { and } \boldsymbol{A}\left(\boldsymbol{p}_{H}\right):=\int_{\omega} \boldsymbol{p}_{H}(y) \boldsymbol{y}^{T} \mathrm{~d} \omega \in \mathbb{S}^{2} \tag{2.11}
\end{equation*}
$$

It is easily verified that, for each $\boldsymbol{d} \in \mathbb{R}^{2}$ and each $\boldsymbol{\eta} \in \boldsymbol{V}(\omega)$,

$$
\begin{equation*}
L\left(\boldsymbol{r}\left(\boldsymbol{d}, \eta_{3}\right)\right)=\boldsymbol{d} \cdot\left(\boldsymbol{s}\left(\boldsymbol{p}, \boldsymbol{q}_{H}, \eta_{3}\right)-\frac{1}{2} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right) \boldsymbol{d}\right) \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{s}\left(\boldsymbol{p}, \boldsymbol{q}_{H}, \eta_{3}\right):=\int_{\omega}\left(p_{3}(y) \boldsymbol{y}-\boldsymbol{q}_{H}(y)-\eta_{3}(y) \boldsymbol{p}_{H}(y)\right) \mathrm{d} \omega \in \mathbb{R}^{2} \tag{2.13}
\end{equation*}
$$

If $\boldsymbol{A}\left(\boldsymbol{p}_{H}\right) \neq \mathbf{0}$, assume that there exists a vector $\boldsymbol{\delta}^{\perp} \in\left(\boldsymbol{\operatorname { C e r }} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp}$ such that $\boldsymbol{\delta}^{\perp} \cdot \boldsymbol{A}\left(\boldsymbol{p}_{H}\right) \boldsymbol{\delta}^{\perp}<0$. Then relations (2.10) cannot hold since

$$
\sup _{t \in \mathbb{R}}\left\{t \boldsymbol{\delta}^{\perp} \cdot \boldsymbol{s}\left(\boldsymbol{p}, \boldsymbol{q}_{H}, \eta_{3}\right)-\frac{1}{2} t^{2} \boldsymbol{\delta}^{\perp} \cdot \boldsymbol{A}\left(\boldsymbol{p}_{H}\right) \boldsymbol{\delta}^{\perp}\right\}=+\infty
$$

Therefore, the symmetric matrix $\boldsymbol{A}\left(\boldsymbol{p}_{H}\right)$ is necessarily either positive-definite if it is invertible, or non-negative-definite if it is singular.
If $\boldsymbol{A}\left(\boldsymbol{p}_{H}\right)$ is singular (in which case $\boldsymbol{A}\left(\boldsymbol{p}_{H}\right) \in \mathbb{S}_{\geqslant}^{2}$), let $\boldsymbol{\delta} \in \operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)$ be such that $\boldsymbol{\delta} \neq \mathbf{0}$. Expressing that (2.10) must hold in particular for any vector \boldsymbol{d} of the form $\boldsymbol{d}=t \boldsymbol{\delta}, t \in \mathbb{R}$, then shows that, for each $\boldsymbol{\eta} \in \boldsymbol{V}(\omega)$, the vector $\boldsymbol{s}\left(\boldsymbol{p}, \boldsymbol{q}_{H}, \eta_{3}\right)$ must be orthogonal to $\boldsymbol{\delta}$. In other words, if $\boldsymbol{A}\left(\boldsymbol{p}_{H}\right)$ is singular, then

$$
\begin{equation*}
\boldsymbol{s}\left(\boldsymbol{p}, \boldsymbol{q}_{H}, \eta_{3}\right) \in\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp} \quad \text { for each } \boldsymbol{\eta} \in \boldsymbol{V}(\omega) \tag{2.14}
\end{equation*}
$$

We now show that, conversely, if either $\boldsymbol{A}\left(\boldsymbol{p}_{H}\right) \in \mathbb{S}_{>}^{2}$, or $\boldsymbol{A}\left(\boldsymbol{p}_{H}\right) \in \mathbb{S}_{\geqslant}^{2}$ is singular and relation (2.14) holds, then relation (2.10) holds. First, we note that, if $\boldsymbol{A}\left(\boldsymbol{p}_{H}\right)=\mathbf{0}$, then $\boldsymbol{s}\left(\boldsymbol{p}, \boldsymbol{q}_{H}, \eta_{3}\right)=0$ for each $\boldsymbol{\eta} \in \boldsymbol{V}(\omega)$ by (2.12); hence $L\left(\boldsymbol{r}\left(\boldsymbol{d}, \eta_{3}\right)\right)=0$ for each $\boldsymbol{\eta} \in \boldsymbol{V}(\omega)$ and thus (2.10) holds in this case. Second, assume that $\boldsymbol{A}\left(\boldsymbol{p}_{H}\right) \neq \mathbf{0}$. Given any vector $\boldsymbol{d} \in \mathbb{R}^{2}$, let $\boldsymbol{d}=\boldsymbol{\delta}+\boldsymbol{\delta}^{\perp}$ with $\boldsymbol{\delta} \in \operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)$ and $\boldsymbol{\delta}^{\perp} \in\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp}$. Then

$$
L\left(\boldsymbol{r}\left(\boldsymbol{d}, \eta_{3}\right)\right)=\delta^{\perp} \cdot \boldsymbol{s}\left(\boldsymbol{p}, \boldsymbol{q}_{H}, \eta_{3}\right)-\frac{1}{2} \delta^{\perp} \cdot\left(\boldsymbol{A}\left(\boldsymbol{p}_{H}\right) \delta^{\perp}\right) \leqslant\left|\boldsymbol{s}\left(\boldsymbol{p}, \boldsymbol{q}_{H}, \eta_{3}\right)\right|\left|\delta^{\perp}\right|-\frac{\lambda}{2}\left|\delta^{\perp}\right|^{2}
$$

where $|\cdot|$ denotes the Euclidean norm and $\lambda>0$ denotes the smallest nonzero eigenvalue of the matrix $\boldsymbol{A}\left(\boldsymbol{p}_{H}\right)$. Hence $\sup _{\boldsymbol{d} \in \mathbb{R}^{2}} L\left(\boldsymbol{r}\left(\boldsymbol{d}, \eta_{3}\right)\right)<+\infty$ for each $\boldsymbol{\eta} \in \boldsymbol{V}(\omega)$, i.e., (2.10) also holds in this case.

The specific form of the vector $\boldsymbol{s}\left(\boldsymbol{p}, \boldsymbol{q}_{H}, \eta_{3}\right)$ (cf. (2.13)) then implies that relations (2.14) hold for all $\boldsymbol{\eta} \in \boldsymbol{V}(\omega)$ if and only if $\int_{\omega}\left(p_{3} \boldsymbol{y}-\boldsymbol{q}_{H}(y)\right) \mathrm{d} \omega \in\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp}$ and $\boldsymbol{p}_{H} \in\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp}$ a.e. in ω (hence $\boldsymbol{p}_{H}=\mathbf{0}$ a.e. in ω if $\left.\boldsymbol{A}\left(\boldsymbol{p}_{H}\right)=\mathbf{0}\right)$. This completes the proof.

3. The intrinsic approach to the Neumann problem for a nonlinearly elastic plate

We now recast the minimization problem $\inf _{\boldsymbol{\eta} \in \boldsymbol{V}(\omega)} J(\boldsymbol{\eta})$, where the space $\boldsymbol{V}(\omega)$ and the functional $J: \boldsymbol{V}(\omega) \rightarrow \mathbb{R}$ are defined in (1.1)-(1.2), as a minimization problem in terms of the new unknowns $E_{\alpha \beta} \in L^{2}(\omega)$ and $F_{\alpha \beta} \in L^{2}(\omega)$ defined in (1.5). Crucial to this objective is the following result from [3]:

Theorem 3.1. Let ω be a simply-connected domain in \mathbb{R}^{2}. Define the space

$$
\begin{gather*}
\mathbb{E}(\omega):=\left\{(\boldsymbol{E}, \boldsymbol{F}) \in \mathbb{L}^{2}(\omega) \times \mathbb{L}^{2}(\omega) ; \partial_{\sigma \tau} E_{\alpha \beta}+\partial_{\alpha \beta} E_{\sigma \tau}-\partial_{\alpha \sigma} E_{\beta \tau}-\partial_{\beta \tau} E_{\alpha \sigma}=F_{\alpha \sigma} F_{\beta \tau}-F_{\alpha \beta} F_{\sigma \tau} \text { in } H^{-2}(\omega)\right. \\
 \tag{3.1}\\
\text { and } \left.\partial_{\sigma} F_{\alpha \beta}=\partial_{\beta} F_{\alpha \sigma} \text { in } H^{-1}(\omega)\right\} .
\end{gather*}
$$

Then, given any $(\boldsymbol{E}, \boldsymbol{F}) \in \mathbb{E}(\omega)$, there exists a unique vector field

$$
\begin{equation*}
\boldsymbol{\eta} \in \boldsymbol{V}^{0}(\omega):=\left\{\boldsymbol{\eta}=\left(\eta_{i}\right) \in \mathbf{V}(\omega) ; \int_{\omega} \boldsymbol{\eta} \mathrm{d} \omega=\mathbf{0}, \int_{\omega} \partial_{\alpha} \eta_{3} \mathrm{~d} \omega=0, \int_{\omega}\left(\partial_{1} \eta_{2}-\partial_{2} \eta_{1}\right) \mathrm{d} \omega=0\right\} \tag{3.2}
\end{equation*}
$$

that satisfies

$$
\begin{align*}
& \frac{1}{2}\left(\partial_{\alpha} \eta_{\beta}+\partial_{\beta} \eta_{\alpha}+\partial_{\alpha} \eta_{3} \partial_{\beta} \eta_{3}\right)=E_{\alpha \beta} \quad \text { in } L^{2}(\omega), \tag{3.3}\\
& \partial_{\alpha \beta} \eta_{3}=F_{\alpha \beta} \quad \text { in } L^{2}(\omega) . \tag{3.4}
\end{align*}
$$

Some care must be exercised in applying this result however: Given a vector field $\boldsymbol{\eta} \in \boldsymbol{V}(\omega)$, the number $J(\boldsymbol{\eta})$ is not defined by the two fields $\boldsymbol{E}=\left(E_{\alpha \beta}\right)$ and $\boldsymbol{F}=\left(F_{\alpha \beta}\right)$ defined in (1.5), because of the linear form L of (1.3). As shown in the next theorem (whose proof relies on simple computations), the remedy consists in introducing a vector δ^{\perp} in the subspace $\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp}$ of \mathbb{R}^{2} as an additional variable (the matrix $\boldsymbol{A}\left(\boldsymbol{p}_{H}\right) \in \mathbb{S}_{\geqslant}^{2}$ is defined in (2.5)).

Theorem 3.2. Given any $\boldsymbol{\eta} \in \boldsymbol{V}(\omega)$, let $\eta^{0} \in \boldsymbol{V}^{0}(\omega)$ be the unique vector field that satisfies (Theorem 3.1)

$$
\begin{equation*}
\frac{1}{2}\left(\partial_{\alpha} \eta_{\beta}^{0}+\partial_{\beta} \eta_{\alpha}^{0}+\partial_{\alpha} \eta_{3}^{0} \partial_{\beta} \eta_{3}^{0}\right)=\frac{1}{2}\left(\partial_{\alpha} \eta_{\beta}+\partial_{\beta} \eta_{\alpha}+\partial_{\alpha} \eta_{3} \partial_{\beta} \eta_{3}\right) \quad \text { and } \quad \partial_{\alpha \beta} \eta_{3}^{0}=\partial_{\alpha \beta} \eta_{3} \quad \text { in } L^{2}(\omega) \tag{3.5}
\end{equation*}
$$

so that (cf. [3, Theorem 2.1]),

$$
\begin{equation*}
\eta=\eta_{0}+\boldsymbol{a}+b \boldsymbol{e} \wedge \boldsymbol{i d}-\eta_{3} \boldsymbol{d}+(\boldsymbol{d} \cdot \boldsymbol{i d}) \boldsymbol{e}-\frac{1}{2}(\boldsymbol{d} \cdot \boldsymbol{i d}) \boldsymbol{d} \tag{3.6}
\end{equation*}
$$

for some $\boldsymbol{a} \in \mathbb{R}^{3}, b \in \mathbb{R}$, and $\boldsymbol{d} \in \mathbb{R}^{2}$. For each $\boldsymbol{d} \in \mathbb{R}^{2}$ and each $\eta_{3} \in H^{2}(\omega)$, let

$$
\begin{equation*}
\boldsymbol{r}\left(\boldsymbol{d}, \eta_{3}\right):=-\eta_{3} \boldsymbol{d}+(\boldsymbol{d} \cdot \boldsymbol{i d}) \boldsymbol{e}-\frac{1}{2}(\boldsymbol{d} \cdot \boldsymbol{i d}) \boldsymbol{d} . \tag{3.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
J(\boldsymbol{\eta})=J\left(\boldsymbol{\eta}^{0}\right)-L\left(\boldsymbol{r}\left(\boldsymbol{\delta}^{\perp}, \eta_{3}^{0}\right)\right) \tag{3.8}
\end{equation*}
$$

where, for each $\boldsymbol{d} \in \mathbb{R}^{2}$, the vector δ^{\perp} denotes the projection of \boldsymbol{d} onto the subspace $\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp}$ of \mathbb{R}^{2}.

Let the functional $\mathcal{J}: \mathbb{E}(\omega) \times\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp} \rightarrow \mathbb{R}$ be defined for each $\left((\boldsymbol{E}, \boldsymbol{F}), \boldsymbol{\delta}^{\perp}\right) \in \mathbb{E}(\omega) \times\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp}$ by

$$
\begin{equation*}
\mathcal{J}\left((\boldsymbol{E}, \boldsymbol{F}), \boldsymbol{\delta}^{\perp}\right):=\frac{1}{2} \int_{\omega}\left\{\varepsilon a_{\alpha \beta \sigma \tau} E_{\sigma \tau} E_{\alpha \beta}+\frac{\varepsilon^{3}}{3} a_{\alpha \beta \sigma \tau} F_{\sigma \tau} F_{\alpha \beta}\right\} \mathrm{d} \omega-L(\boldsymbol{\Phi}(\boldsymbol{E}, \boldsymbol{F}))-L\left(\boldsymbol{r}\left(\delta^{\perp}, \Phi_{3}(\boldsymbol{E}, \boldsymbol{F})\right)\right) \tag{3.9}
\end{equation*}
$$

where $\boldsymbol{\Phi}=\left(\Phi_{i}\right): \mathbb{E}(\omega) \rightarrow \boldsymbol{V}^{0}(\omega)$ is the nonlinear bijection defined for each $(\boldsymbol{E}, \boldsymbol{F}) \in \mathbb{E}(\omega)$ by $\boldsymbol{\Phi}(\boldsymbol{E}, \boldsymbol{F}):=\eta^{0}$, where η^{0} is the unique element in the space $\boldsymbol{V}^{0}(\omega)$ that satisfies Eqs. (3.3)-(3.4) (Theorem 3.1). Then the intrinsic approach to the Neumann problem for a nonlinearly elastic plate consists in minimizing the function \mathcal{J} of (3.9) over the set $\mathbb{E}(\omega) \times\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp}$.

Note that, expressed in terms of $\eta^{0}=\boldsymbol{\Phi}(\boldsymbol{E}, \boldsymbol{F})$, the last two terms in (3.9) respectively become:

$$
\begin{align*}
& L(\boldsymbol{\Phi}(\boldsymbol{E}, \boldsymbol{F}))=\int_{\omega} \boldsymbol{p} \cdot \eta^{0} \mathrm{~d} \omega-\int_{\omega} \boldsymbol{q}_{H} \cdot \nabla \eta_{3}^{0} \mathrm{~d} \omega \tag{3.10}\\
& L\left(\boldsymbol{r}\left(\boldsymbol{\delta}^{\perp}, \Phi_{3}(\boldsymbol{E}, \boldsymbol{F})\right)\right)=\boldsymbol{\delta}^{\perp} \cdot \int_{\omega}\left(p_{3} \boldsymbol{y}-\boldsymbol{q}_{H}-\eta_{3}^{0} \boldsymbol{p}_{H}\right) \mathrm{d} \omega-\frac{1}{2} \boldsymbol{\delta}^{\perp} \cdot\left(\boldsymbol{A}\left(\boldsymbol{p}_{H}\right) \boldsymbol{\delta}^{\perp}\right) . \tag{3.11}
\end{align*}
$$

Note that the additional variable δ^{\perp} vanishes when $\boldsymbol{A}\left(\boldsymbol{p}_{H}\right)=\mathbf{0}$, in which case the functional \mathcal{J} of (3.9) reduces to its first two terms. But, even when $\boldsymbol{A}\left(\boldsymbol{p}_{H}\right) \neq \mathbf{0}$, it is still possible to define a minimization problem solely in terms of the variable $(\boldsymbol{E}, \boldsymbol{F}) \in \mathbb{E}(\omega)$. To this end, notice that, for a given $(\boldsymbol{E}, \boldsymbol{F}) \in \mathbb{E}(\omega)$, or equivalently for a given $\boldsymbol{\eta}^{0} \in \boldsymbol{V}^{0}(\omega)$, there exists a unique $\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp}$ that minimizes the functional defined by

$$
\boldsymbol{\delta}^{\perp} \in\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp} \subset \mathbb{R}^{2} \quad \rightarrow \quad \mathcal{J}\left((\boldsymbol{F}, \boldsymbol{F}), \boldsymbol{\delta}^{\perp}\right) \in \mathbb{R}
$$

since this quadratic functional is positive-definite in view of (3.11). Hence it is equivalent to minimize the functional \mathcal{J} : $\mathbb{E}(\omega) \rightarrow \mathbb{R}$ defined for each $(\boldsymbol{E}, \boldsymbol{F}) \in \mathbb{E}(\omega)$ by

$$
\tilde{\mathcal{J}}(\boldsymbol{E}, \boldsymbol{F}):=\inf _{\delta^{\perp} \in\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp}} \mathcal{J}\left((\boldsymbol{E}, \boldsymbol{F}), \boldsymbol{\delta}^{\perp}\right)
$$

4. Existence theorem

The next result constitutes the main result of this Note.

Theorem 4.1. Assume that the vector fields $\boldsymbol{p} \in \boldsymbol{L}^{2}(\omega)$ and $\boldsymbol{q}_{H} \in \boldsymbol{L}^{2}(\omega)$ satisfy condition (2.4) and one of the conditions (2.6), (2.7), or (2.8). Let the functional $\mathcal{J}: \mathbb{E}(\omega) \times\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp} \rightarrow \mathbb{R}$ be defined as in (3.9). Then, if the norm $\left\|\boldsymbol{p}_{H}\right\|_{\mathbf{L}^{2}(\omega)}$ is small enough, there exists $\left((\overline{\boldsymbol{E}}, \overline{\boldsymbol{F}}), \overline{\boldsymbol{\delta}}^{\perp}\right) \in \mathbb{E}(\omega) \times\left(\boldsymbol{\operatorname { K e r }} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp}$ such that

$$
\begin{equation*}
\mathcal{J}\left((\overline{\boldsymbol{E}}, \overline{\boldsymbol{F}}), \bar{\delta}^{\perp}\right)=\inf \left\{\mathcal{J}\left((\boldsymbol{E}, \boldsymbol{F}), \delta^{\perp}\right) ;\left((\boldsymbol{E}, \boldsymbol{F}), \boldsymbol{\delta}^{\perp}\right) \in \mathbb{E}(\omega) \times\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp}\right\} \tag{4.1}
\end{equation*}
$$

Sketch of proof. (i) In [3, Theorem 3.1], it was shown that $\mathbb{E}(\omega)$ is sequentially weakly closed in $\mathbb{L}^{2}(\omega) \times \mathbb{L}^{2}(\omega)$; hence the set $\mathbb{E}(\omega) \times\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp}$ is sequentially weakly closed in $\mathbb{L}^{2}(\omega) \times \mathbb{L}^{2}(\omega) \times \mathbb{R}^{2}$.
(ii) The functional \mathcal{J} is sequentially weakly lower semi-continuous on the set $\mathbb{E}(\omega) \times\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp}$.

This property clearly holds for the functional defined by the first term in (3.9). That the mapping $\boldsymbol{\Phi}$ maps weakly convergent sequences in $\mathbb{E}(\omega)$ into strongly convergent sequences in $\boldsymbol{V}^{0}(\omega)$ (cf. Theorem 3.1 in [3]; in fact, weak convergence would suffice here) then implies that the functionals defined by the last two terms in (3.9) (re-expressed for this purpose as in (3.10)-(3.11)) are also sequentially weakly lower semi-continuous (recall that the variable $\boldsymbol{\delta}^{\perp}$ varies in a subspace of \mathbb{R}^{2}).
(iii) The functional is coercive on $\mathbb{E}(\omega) \times\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp}$ if the norm $\left\|\boldsymbol{p}_{H}\right\|_{\boldsymbol{L}^{2}(\omega)}$ is small enough.

In what follows, C_{1}, \ldots, C_{6}, denote various constants that are independent of the various functions or vector fields involved in a given inequality, and the same notation $\|\cdot\|$ denotes the norm in the spaces $L^{2}(\omega), \boldsymbol{L}^{2}(\omega)$, and $\mathbb{L}^{2}(\omega)$. Let the vector field $\boldsymbol{f} \in \boldsymbol{L}^{2}(\omega)$ be defined by

$$
\boldsymbol{f}(y):=p_{3}(y) \boldsymbol{y}-\boldsymbol{q}_{H}(y) \quad \text { for almost all } y \in \omega .
$$

Then, for any $\left((\boldsymbol{E}, \boldsymbol{F}), \delta^{\perp}\right) \in \mathbb{E}(\omega) \times\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp}$,

$$
\begin{aligned}
\mathcal{J}\left((\boldsymbol{E}, \boldsymbol{F}), \boldsymbol{\delta}^{\perp}\right) \geqslant & C_{1}\|\boldsymbol{E}\|^{2}+C_{2}\|\boldsymbol{F}\|^{2}+\frac{\lambda}{2}\left|\boldsymbol{\delta}^{\perp}\right|^{2}-\left\|\boldsymbol{p}_{H}\right\|\left\|\boldsymbol{\eta}_{H}^{0}\right\|-\left\|p_{3}\right\|\left\|\eta_{3}^{0}\right\| \\
& -\left\|\boldsymbol{q}_{H}\right\|\left\|\nabla \eta_{3}^{0}\right\|-\|\boldsymbol{f}\|_{\mathbf{L}^{1}(\omega)}\left|\boldsymbol{\delta}^{\perp}\right|-\left\|\boldsymbol{p}_{H}\right\|\left\|\eta_{3}^{0}\right\|\left|\boldsymbol{\delta}^{\perp}\right|
\end{aligned}
$$

where $\lambda>0$ denotes the smallest nonzero eigenvalue of the matrix $\boldsymbol{A}\left(\boldsymbol{p}_{H}\right) \in \mathbb{S}_{\geqslant}^{2}$ (recall that $\delta^{\perp}=\mathbf{0}$ if $\left.\boldsymbol{A}\left(\boldsymbol{p}_{H}\right)=\mathbf{0}\right)$. Thanks to the relations that led to the nonlinear Korn inequality established in [3] (cf. Eqs. (3.2)-(3.5) in [3]),

$$
\left\|\eta_{3}^{0}\right\|_{H^{2}(\omega)} \leqslant C_{3}\left\|\nabla^{2} \eta_{3}^{0}\right\| \quad \text { and } \quad\left\|\boldsymbol{\eta}_{H}^{0}\right\|_{\boldsymbol{H}^{1}(\omega)} \leqslant C_{4}\left(\left\|\nabla_{s} \boldsymbol{\eta}_{H}^{0}+\frac{1}{2} \nabla \eta_{3}^{0} \nabla \eta_{3}^{0^{T}}\right\|+\left\|\nabla^{2} \eta_{3}\right\|^{2}\right)
$$

Therefore,

$$
\begin{aligned}
\mathcal{J}\left((\boldsymbol{E}, \boldsymbol{F}), \delta^{\perp}\right) \geqslant & C_{1}\|\boldsymbol{E}\|^{2}+\left(C_{2}-\left(C_{5}+C_{6} / 2\right)\left\|\boldsymbol{p}_{H}\right\|\right)\|\boldsymbol{F}\|^{2}+\left(\lambda / 2-C_{6} / 2\left\|\boldsymbol{p}_{H}\right\|\right)\left|\boldsymbol{\delta}^{\perp}\right|^{2} \\
& -C_{5}\left\|\boldsymbol{p}_{H}\right\|\|\boldsymbol{E}\|-C_{6}\left(\left\|p_{3}\right\|+\left\|\boldsymbol{q}_{H}\right\|\right)\|\boldsymbol{F}\|-\|\boldsymbol{f}\|_{\boldsymbol{L}^{1}(\omega)}\left|\boldsymbol{\delta}^{\perp}\right|
\end{aligned}
$$

Hence \mathcal{J} is coercive on $\mathbb{E}(\omega) \times\left(\operatorname{Ker} \boldsymbol{A}\left(\boldsymbol{p}_{H}\right)\right)^{\perp}$ if $\left\|\boldsymbol{p}_{H}\right\|$ is small enough.
Note that, thanks to Theorem 3.2, the above theorem also establishes the existence of a minimizer of the functional J of (1.2) in the space $V(\omega)$ of (1.1), thus extending to the pure Neumann problem the existence result of [2] for the DirichletNeumann (in which case the norm $\left\|\boldsymbol{p}_{H}\right\|_{L^{2}(\omega)}$ was also assumed to be small enough).

5. A definition of polyconvexity

Inspired by the definition proposed by John Ball in his landmark paper [1], we now propose a definition of polyconvexity that is directly adapted to the problem considered in this Note (this definition can be extended to more general situations; cf. [4]). For simplicity, we assume here that $\boldsymbol{A}\left(\boldsymbol{p}_{H}\right)=\mathbf{0}$.

Let the subset $\mathbb{E}(\omega)$ of $\mathbb{L}^{2}(\omega) \times \mathbb{L}^{2}(\omega)$ be defined as in (3.1). Then an integrand $W: \mathbb{E}(\omega) \rightarrow \mathbb{R}$ is said to be polyconvex if there exists a convex function $\mathbb{W}: \mathbb{L}^{2}(\omega) \times \mathbb{L}^{2}(\omega)$ such that

$$
W(\boldsymbol{E}, \boldsymbol{F})=\mathbb{W}(\boldsymbol{E}, \boldsymbol{F}) \quad \text { for all }(\boldsymbol{E}, \boldsymbol{F}) \in \mathbb{E}(\omega)
$$

Clearly, this assumption is satisfied by the integrand appearing in the first term of the functional \mathcal{J} of (3.9).
To further substantiate this definition, it will be proved in [4] that the set $\mathbb{E}(\omega)$ is a manifold of class \mathcal{C} (in $\mathbb{L}^{2}(\omega) \times \mathbb{L}^{2}(\omega)$ and that the mapping $\boldsymbol{\Phi}^{-1}: \boldsymbol{V}^{0}(\omega) \rightarrow \mathbb{E}(\omega)$ is a \mathcal{C}^{∞}-diffeomorphism, where the space $\boldsymbol{V}^{0}(\omega)$ and the mapping $\boldsymbol{\Phi}$ are defined as in Section 3.

The proof of Theorem 4.1 then shows that this notion is indeed the key to establishing the coerciveness and the sequential weak lower semi-continuity of the functional \mathcal{J}, just like the notion of polyconvexity introduced by John Ball in nonlinear three-dimensional elasticity.

Acknowledgement

The work described in this paper was partially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region [Project No. City U 100709].

References

[1] J. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 (1977) 337-403.
[2] P.G. Ciarlet, P. Destuynder, A justification of a nonlinear model in plate theory, Comput. Methods Appl. Mech. Engrg. 17/18 (1979) $227-258$.
[3] P.G. Ciarlet, S. Mardare, Nonlinear Saint-Venant compatibility conditions for nonlinearly elastic plates, C. R. Acad. Sci. Paris, Ser. I 349 (23-24) (2011) 1297-1302.
[4] P.G. Ciarlet, S. Mardare, Saint-Venant compatibility conditions and a notion of polyconvexity in nonlinear plate theory, in preparation.

[^0]: E-mail addresses: mapgc@cityu.edu.hk (P.G. Ciarlet), sorin.mardare@univ-rouen.fr (S. Mardare).
 1631-073X/\$ - see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2011.11.001

