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Let ω be a domain in R
2. The classical approach to the Neumann problem for a

nonlinearly elastic plate consists in seeking a displacement field η = (ηi) ∈ V (ω) =
H1(ω) × H1(ω) × H2(ω) that minimizes a non-quadratic functional over V (ω). We show
that this problem can be recast as a minimization problem in terms of the new unknowns
Eαβ = 1

2 (∂αηβ +∂βηα +∂αη3∂βη3) ∈ L2(ω) and Fαβ = ∂αβη3 ∈ L2(ω) and that this problem
has a solution in a manifold of symmetric matrices E = (Eαβ) and F = (Fαβ) whose
components Eαβ ∈ L2(ω) and Fαβ ∈ L2(ω) satisfy nonlinear compatibility conditions of
Saint-Venant type. We also show that such an “intrinsic approach” naturally leads to a
new definition of polyconvexity.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit ω un domaine de R
2. L’approche classique du problème de Neumann pour une plaque

non linéairement élastique consiste à chercher un champ de déplacements η = (ηi) ∈
V (ω) = H1(ω)× H1(ω)× H2(ω) qui minimise une fonctionnelle non quadratique sur V (ω).
Nous montrons que ce problème peut être ré-écrit comme un problème de minimisation
en termes des nouvelles inconnues Eαβ = 1

2 (∂αηβ + ∂βηα + ∂αη3∂βη3) ∈ L2(ω) et Fαβ =
∂αβη3 ∈ L2(ω) et que ce problème a une solution dans une variété de matrices symétriques
E = (Eαβ) et F = (Fαβ) dont les composantes Eαβ ∈ L2(ω) et Fαβ ∈ L2(ω) satisfont
des conditions non linéaires de compatibilité du type de Saint-Venant. Nous montrons
également qu’une telle « approche intrinsèque » conduit naturellement à une nouvelle
définition de polyconvexité.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. The classical approach to the Neumann problem for a nonlinearly elastic plate

This Note is a sequel to the Note [3], to which we refer for the notations and definitions not recalled here. Let ω be a
domain in R

2 and let

V (ω) := H1(ω) × H1(ω) × H2(ω). (1.1)
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In the classical Kirchhoff–von Kármán–Love theory, the Neumann problem for a nonlinearly elastic plate with middle surface ω̄
consists in finding a vector field ζ = (ζi) ∈ V (ω) (the displacement vector field of ω̄) that minimizes over the space V (ω)

the functional J : V (ω) → R defined for each η = (ηi) ∈ V (ω) by

J (η) := 1

2

∫
ω

{
ε

4
aαβστ (∂σ ητ + ∂τ ησ + ∂σ η3∂τ η3)(∂αηβ + ∂βηα + ∂αη3∂βη3)

+ ε3

3
aαβστ ∂στ η3∂αβη3

}
dω − L(η), (1.2)

where

L(η) :=
∫
ω

piηi dω −
∫
ω

qα∂αη3 dω. (1.3)

In (1.2), ε > 0 denotes half of the thickness of the plate, and the constants aαβστ , which denote the components of the
two-dimensional elasticity tensor of the plate, satisfy

aαβστ tστ tαβ � 4μ
∑
α,β

|tαβ |2 for all (tαβ) ∈ S
2, (1.4)

for some constant μ > 0 (one of the Lamé constants of the constituting material of the plate, assumed to be homogeneous
and isotropic; the reference configuration ω̄ × [−ε, ε] of the plate is assumed to be a natural state). In the linear form
L : V (ω) → R defined by (1.2), the functions pi ∈ L2(ω) and qα ∈ L2(ω) are given (they represent the resultants of the
forces that are applied to the plate).

The objective of this Note is to establish the existence of a solution to this minimization problem, by means of a refor-
mulation of this minimization problem in terms of the new unknowns

Eαβ := 1

2
(∂αηβ + ∂βηα + ∂αη3∂βη3) ∈ L2(ω) and Fαβ := ∂αβη3 ∈ L2(ω), α,β = 1,2, (1.5)

i.e., by means of an intrinsic approach.
Complete proofs will be found in [4].

2. Necessary conditions for the existence of a minimizer

If the plate is linearly elastic, i.e., if the nonlinear functions Eαβ defined in (1.4) are replaced by their linear parts

eαβ := 1

2
(∂αηβ + ∂βηα), α,β = 1,2, (2.1)

the functional J of (1.2) is replaced by a quadratic functional. In this case, it is clear that a necessary (and in effect sufficient)
condition for the existence of a minimizer of this quadratic functional over the space V (ω) of (1.1) is that the applied forces
be such that L(η) = 0 for all the vector fields η = (ηi) ∈ V (ω) that satisfy

1

2
(∂αηβ + ∂βηα) = 0 and ∂αβη3 = 0 in ω. (2.2)

It is therefore natural that we likewise begin by identifying necessary conditions for the existence of a minimizer of the
functional J of (1.2) over the space V (ω) defined in (1.1) (like in the linear case, these conditions will eventually turn out
to be also sufficient when the norms ‖pα‖L2(ω) are small enough; cf. Theorem 4.1).

In what follows, M
2,S

2,S
2
� , and S

2
> respectively designate the set of all 2 × 2 real matrices, and of all symmetric,

non-negative definite symmetric, and positive-definite symmetric, 2 × 2 real matrices.

Theorem 2.1. In order that

infη ∈ V (ω) J (η) > −∞, (2.3)

it is necessary that the vector fields

p = (pH , p3) := (pi) ∈ L2(ω) and qH := (qα) ∈ L2(ω)

satisfy the following relations. First,∫
p(y)dω = 0. (2.4)
ω
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Second, define the matrix

A(pH ) :=
∫
ω

pH (y)yT dω ∈ M
2. (2.5)

Then one of the following three mutually exclusive conditions is satisfied. If A(pH ) = 0, then

pH = 0 a.e. in ω and

∫
ω

(
p3 y − qH (y)

)
dω = 0. (2.6)

If Ker A(pH ) �= {0}, then

A(pH ) ∈ S
2
�, pH ∈ (

Ker A(pH )
)⊥

a.e. in ω and

∫
ω

(
p3 y − qH (y)

)
dω ∈ (

Ker A(pH )
)⊥

a.e. in ω. (2.7)

If A(pH ) �= 0 and Ker A(pH ) = {0}, then

A(pH ) ∈ S
2
>. (2.8)

Sketch of proof. In [3, Theorem 2.1], we showed that, if two vector fields η̃ = (η̃H , η̃3) ∈ V (ω) and η = (ηH , η3) ∈ V (ω)

satisfy

1

2
(∂αη̃β + ∂βη̃α + ∂αη̃3∂βη̃3) = 1

2
(∂αηβ + ∂βηα + ∂αη3∂βη3) and ∂αβη̃3 = ∂αβη3 in L2(ω),

then

η̃(y) = η(y) + a + be ∧ y − η3(y)d + (d · y)e − 1

2
(d · y)d for almost all y ∈ ω,

for some a ∈ R
3,b ∈ R, and d ∈ R

2, where (e)i := δi3. The proof thus amounts to finding necessary and sufficient conditions
guaranteeing that the following two conditions simultaneously hold. First,

sup
{

L(a + be ∧ id);a ∈ R
3,b ∈ R

}
< +∞. (2.9)

Second,

sup
{

L
(
r(d, η3)

);d ∈ R
2} < +∞ for each η ∈ V (ω), (2.10)

where

r(d, η3) := −η3d + (d · id)e − 1

2
(d · id)d ∈ R

3.

Since {a + be ∧ id;a ∈ R
3,b ∈ R} is a vector space, condition (2.9) is equivalent to

L(a + be ∧ id) = 0 for all a ∈ R
3 and b ∈ R.

Since

L(a + be ∧ id) =
∫
ω

p(y) · a dω + b

∫
ω

(−p1 y2 + p2 y1)dω,

it follows that (2.9) is satisfied if and only if∫
ω

p(y)dω = 0 and A(pH ) :=
∫
ω

pH (y)yT dω ∈ S
2. (2.11)

It is easily verified that, for each d ∈ R
2 and each η ∈ V (ω),

L
(
r(d, η3)

) = d ·
(

s(p,qH , η3) − 1

2
A(pH )d

)
, (2.12)

where

s(p,qH , η3) :=
∫ (

p3(y)y − qH (y) − η3(y)pH (y)
)

dω ∈ R
2. (2.13)
ω
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If A(pH ) �= 0, assume that there exists a vector δ⊥ ∈ (Ker A(pH ))⊥ such that δ⊥ · A(pH )δ⊥ < 0. Then relations (2.10)
cannot hold since

sup
t∈R

{
tδ⊥ · s(p,qH , η3) − 1

2
t2δ⊥ · A(pH )δ⊥

}
= +∞.

Therefore, the symmetric matrix A(pH ) is necessarily either positive-definite if it is invertible, or non-negative-definite if it is singular.
If A(pH ) is singular (in which case A(pH ) ∈ S

2
�), let δ ∈ Ker A(pH ) be such that δ �= 0. Expressing that (2.10) must hold

in particular for any vector d of the form d = tδ, t ∈ R, then shows that, for each η ∈ V (ω), the vector s(p,qH , η3) must be
orthogonal to δ. In other words, if A(pH ) is singular, then

s(p,qH , η3) ∈ (
Ker A(pH )

)⊥
for each η ∈ V (ω). (2.14)

We now show that, conversely, if either A(pH ) ∈ S
2
> , or A(pH ) ∈ S

2
� is singular and relation (2.14) holds, then relation

(2.10) holds. First, we note that, if A(pH ) = 0, then s(p,qH , η3) = 0 for each η ∈ V (ω) by (2.12); hence L(r(d, η3)) = 0 for
each η ∈ V (ω) and thus (2.10) holds in this case. Second, assume that A(pH ) �= 0. Given any vector d ∈ R

2, let d = δ + δ⊥
with δ ∈ Ker A(pH ) and δ⊥ ∈ (Ker A(pH ))⊥ . Then

L
(
r(d, η3)

) = δ⊥ · s(p,qH , η3) − 1

2
δ⊥ · (A(pH )δ⊥)

�
∣∣s(p,qH , η3)

∣∣∣∣δ⊥∣∣ − λ

2

∣∣δ⊥∣∣2
,

where | · | denotes the Euclidean norm and λ > 0 denotes the smallest nonzero eigenvalue of the matrix A(pH ). Hence
supd∈R2 L(r(d, η3)) < +∞ for each η ∈ V (ω), i.e., (2.10) also holds in this case.

The specific form of the vector s(p,qH , η3) (cf. (2.13)) then implies that relations (2.14) hold for all η ∈ V (ω) if and
only if

∫
ω(p3 y − qH (y))dω ∈ (Ker A(pH ))⊥ and pH ∈ (Ker A(pH ))⊥ a.e. in ω (hence pH = 0 a.e. in ω if A(pH ) = 0). This

completes the proof. �
3. The intrinsic approach to the Neumann problem for a nonlinearly elastic plate

We now recast the minimization problem infη∈V (ω) J (η), where the space V (ω) and the functional J : V (ω) → R are
defined in (1.1)–(1.2), as a minimization problem in terms of the new unknowns Eαβ ∈ L2(ω) and Fαβ ∈ L2(ω) defined in
(1.5). Crucial to this objective is the following result from [3]:

Theorem 3.1. Let ω be a simply-connected domain in R
2 . Define the space

E(ω) := {
(E, F ) ∈ L

2(ω) × L
2(ω); ∂στ Eαβ + ∂αβ Eστ − ∂ασ Eβτ − ∂βτ Eασ = Fασ Fβτ − Fαβ Fστ in H−2(ω)

and ∂σ Fαβ = ∂β Fασ in H−1(ω)
}
. (3.1)

Then, given any (E, F ) ∈ E(ω), there exists a unique vector field

η ∈ V 0(ω) :=
{
η = (ηi) ∈ V (ω);

∫
ω

η dω = 0,

∫
ω

∂αη3 dω = 0,

∫
ω

(∂1η2 − ∂2η1)dω = 0

}
(3.2)

that satisfies

1

2
(∂αηβ + ∂βηα + ∂αη3∂βη3) = Eαβ in L2(ω), (3.3)

∂αβη3 = Fαβ in L2(ω). (3.4)

Some care must be exercised in applying this result however: Given a vector field η ∈ V (ω), the number J (η) is not
defined by the two fields E = (Eαβ) and F = (Fαβ) defined in (1.5), because of the linear form L of (1.3). As shown in the
next theorem (whose proof relies on simple computations), the remedy consists in introducing a vector δ⊥ in the subspace
(Ker A(pH ))⊥ of R

2 as an additional variable (the matrix A(pH ) ∈ S
2
� is defined in (2.5)).

Theorem 3.2. Given any η ∈ V (ω), let η0 ∈ V 0(ω) be the unique vector field that satisfies (Theorem 3.1)

1

2

(
∂αη0

β + ∂βη0
α + ∂αη0

3∂βη0
3

) = 1

2
(∂αηβ + ∂βηα + ∂αη3∂βη3) and ∂αβη0

3 = ∂αβη3 in L2(ω), (3.5)

so that (cf. [3, Theorem 2.1]),

η = η0 + a + be ∧ id − η3d + (d · id)e − 1
(d · id)d (3.6)
2
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for some a ∈ R
3,b ∈ R, and d ∈ R

2 . For each d ∈ R
2 and each η3 ∈ H2(ω), let

r(d, η3) := −η3d + (d · id)e − 1

2
(d · id)d. (3.7)

Then

J (η) = J
(
η0) − L

(
r
(
δ⊥, η0

3

))
, (3.8)

where, for each d ∈ R
2 , the vector δ⊥ denotes the projection of d onto the subspace (Ker A(pH ))⊥ of R

2 .

Let the functional J : E(ω) × (Ker A(pH ))⊥ → R be defined for each ((E, F ), δ⊥) ∈ E(ω) × (Ker A(pH ))⊥ by

J
(
(E, F ), δ⊥) := 1

2

∫
ω

{
εaαβστ Eστ Eαβ + ε3

3
aαβστ Fστ Fαβ

}
dω − L

(
Φ(E, F )

) − L
(
r
(
δ⊥,Φ3(E, F )

))
, (3.9)

where Φ = (Φi) : E(ω) → V 0(ω) is the nonlinear bijection defined for each (E, F ) ∈ E(ω) by Φ(E, F ) := η0, where η0 is the
unique element in the space V 0(ω) that satisfies Eqs. (3.3)–(3.4) (Theorem 3.1). Then the intrinsic approach to the Neumann
problem for a nonlinearly elastic plate consists in minimizing the function J of (3.9) over the set E(ω) × (Ker A(pH ))⊥ .

Note that, expressed in terms of η0 = Φ(E, F ), the last two terms in (3.9) respectively become:

L
(
Φ(E, F )

) =
∫
ω

p · η0 dω −
∫
ω

qH · ∇η0
3 dω, (3.10)

L
(
r
(
δ⊥,Φ3(E, F )

)) = δ⊥ ·
∫
ω

(
p3 y − qH − η0

3 pH

)
dω − 1

2
δ⊥ · (A(pH )δ⊥)

. (3.11)

Note that the additional variable δ⊥ vanishes when A(pH ) = 0, in which case the functional J of (3.9) reduces to its first
two terms. But, even when A(pH ) �= 0, it is still possible to define a minimization problem solely in terms of the variable
(E, F ) ∈ E(ω). To this end, notice that, for a given (E, F ) ∈ E(ω), or equivalently for a given η0 ∈ V 0(ω), there exists a
unique (Ker A(pH ))⊥ that minimizes the functional defined by

δ⊥ ∈ (
Ker A(pH )

)⊥ ⊂ R
2 → J

(
(F , F ), δ⊥) ∈ R,

since this quadratic functional is positive-definite in view of (3.11). Hence it is equivalent to minimize the functional J :
E(ω) → R defined for each (E, F ) ∈ E(ω) by

J̃ (E, F ) := inf
δ⊥∈(Ker A(pH ))⊥

J
(
(E, F ), δ⊥)

.

4. Existence theorem

The next result constitutes the main result of this Note.

Theorem 4.1. Assume that the vector fields p ∈ L2(ω) and qH ∈ L2(ω) satisfy condition (2.4) and one of the conditions (2.6), (2.7),
or (2.8). Let the functional J : E(ω) × (Ker A(pH ))⊥ → R be defined as in (3.9). Then, if the norm ‖pH‖L2(ω) is small enough, there

exists ((Ē, F̄ ), δ̄
⊥
) ∈ E(ω) × (Ker A(pH ))⊥ such that

J
(
(Ē, F̄ ), δ̄

⊥) = inf
{

J
(
(E, F ), δ⊥); ((E, F ), δ⊥) ∈ E(ω) × (

Ker A(pH )
)⊥}

. (4.1)

Sketch of proof. (i) In [3, Theorem 3.1], it was shown that E(ω) is sequentially weakly closed in L
2(ω) × L

2(ω); hence the
set E(ω) × (Ker A(pH ))⊥ is sequentially weakly closed in L

2(ω) × L
2(ω) × R

2.
(ii) The functional J is sequentially weakly lower semi-continuous on the set E(ω) × (Ker A(pH ))⊥ .
This property clearly holds for the functional defined by the first term in (3.9). That the mapping Φ maps weakly con-

vergent sequences in E(ω) into strongly convergent sequences in V 0(ω) (cf. Theorem 3.1 in [3]; in fact, weak convergence
would suffice here) then implies that the functionals defined by the last two terms in (3.9) (re-expressed for this purpose as
in (3.10)–(3.11)) are also sequentially weakly lower semi-continuous (recall that the variable δ⊥ varies in a subspace of R

2).
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(iii) The functional is coercive on E(ω) × (Ker A(pH ))⊥ if the norm ‖pH‖L2(ω) is small enough.
In what follows, C1, . . . , C6, denote various constants that are independent of the various functions or vector fields

involved in a given inequality, and the same notation ‖ · ‖ denotes the norm in the spaces L2(ω), L2(ω), and L
2(ω). Let the

vector field f ∈ L2(ω) be defined by

f (y) := p3(y)y − qH (y) for almost all y ∈ ω.

Then, for any ((E, F ), δ⊥) ∈ E(ω) × (Ker A(pH ))⊥ ,

J
(
(E, F ), δ⊥)

� C1‖E‖2 + C2‖F‖2 + λ

2

∣∣δ⊥∣∣2 − ‖pH‖∥∥η0
H

∥∥ − ‖p3‖
∥∥η0

3

∥∥
− ‖qH‖∥∥∇η0

3

∥∥ − ‖ f ‖L1(ω)

∣∣δ⊥∣∣ − ‖pH‖∥∥η0
3

∥∥∣∣δ⊥∣∣,
where λ > 0 denotes the smallest nonzero eigenvalue of the matrix A(pH ) ∈ S

2
� (recall that δ⊥ = 0 if A(pH ) = 0). Thanks

to the relations that led to the nonlinear Korn inequality established in [3] (cf. Eqs. (3.2)–(3.5) in [3]),

∥∥η0
3

∥∥
H2(ω)

� C3
∥∥∇2η0

3

∥∥ and
∥∥η0

H

∥∥
H 1(ω)

� C4

(∥∥∥∥∇sη
0
H + 1

2
∇η0

3∇η0
3

T
∥∥∥∥ + ∥∥∇2η3

∥∥2
)

.

Therefore,

J
(
(E, F ), δ⊥)

� C1‖E‖2 + (
C2 − (C5 + C6/2)‖pH‖)‖F‖2 + (

λ/2 − C6/2‖pH‖)∣∣δ⊥∣∣2

− C5‖pH‖‖E‖ − C6
(‖p3‖ + ‖qH‖)‖F‖ − ‖ f ‖L1(ω)

∣∣δ⊥∣∣.
Hence J is coercive on E(ω) × (Ker A(pH ))⊥ if ‖pH‖ is small enough. �
Note that, thanks to Theorem 3.2, the above theorem also establishes the existence of a minimizer of the functional J of

(1.2) in the space V (ω) of (1.1), thus extending to the pure Neumann problem the existence result of [2] for the Dirichlet–
Neumann (in which case the norm ‖pH‖L2(ω) was also assumed to be small enough).

5. A definition of polyconvexity

Inspired by the definition proposed by John Ball in his landmark paper [1], we now propose a definition of polyconvexity
that is directly adapted to the problem considered in this Note (this definition can be extended to more general situations;
cf. [4]). For simplicity, we assume here that A(pH ) = 0.

Let the subset E(ω) of L
2(ω) × L

2(ω) be defined as in (3.1). Then an integrand W : E(ω) → R is said to be polyconvex
if there exists a convex function W : L

2(ω) × L
2(ω) such that

W (E, F ) = W(E, F ) for all (E, F ) ∈ E(ω).

Clearly, this assumption is satisfied by the integrand appearing in the first term of the functional J of (3.9).
To further substantiate this definition, it will be proved in [4] that the set E(ω) is a manifold of class C∞ in L

2(ω) × L
2(ω)

and that the mapping Φ−1 : V 0(ω) → E(ω) is a C∞-diffeomorphism, where the space V 0(ω) and the mapping Φ are defined
as in Section 3.

The proof of Theorem 4.1 then shows that this notion is indeed the key to establishing the coerciveness and the se-
quential weak lower semi-continuity of the functional J , just like the notion of polyconvexity introduced by John Ball in
nonlinear three-dimensional elasticity.
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