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ARTICLE INFO ABSTRACT

Article history: Let @ be a domain in R?. The classical approach to the Neumann problem for a
Received and accepted 31 October 2011 nonlinearly elastic plate consists in seeking a displacement field 7 = (1;) € V(w) =
Available online 16 November 2011 H'(w) x H' (@) x H?(w) that minimizes a non-quadratic functional over V (w). We show
Presented by Philippe G. Ciarlet that this problem can be recast as a minimization problem in terms of the new unknowns

Eap = 3 (8unp+3p0a +3an3dpn3) € L2() and Fup = dapns € L*(w) and that this problem
has a solution in a manifold of symmetric matrices E = (Eqg) and F = (Fyp) whose
components Eqp € L?(w) and Fup € L?(w) satisfy nonlinear compatibility conditions of
Saint-Venant type. We also show that such an “intrinsic approach” naturally leads to a
new definition of polyconvexity.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RESUME

Soit w un domaine de R2. L’approche classique du probléme de Neumann pour une plaque
non linéairement élastique consiste a chercher un champ de déplacements 5 = (1;) €
V(w) = H' (w) x H' (w) x H2(w) qui minimise une fonctionnelle non quadratique sur V (w).
Nous montrons que ce probléme peut étre ré-écrit comme un probléme de minimisation
en termes des nouvelles inconnues Eqg = %(801 Np + dpNa + 0xM308M3) € [%2(w) et Fop =
dup3 € L?(w) et que ce probléme a une solution dans une variété de matrices symétriques
E = (Eqp) et F = (Fqp) dont les composantes Eqp € L?(w) et Fop € L?(w) satisfont
des conditions non linéaires de compatibilité du type de Saint-Venant. Nous montrons
également qu'une telle «approche intrinséque» conduit naturellement a une nouvelle
définition de polyconvexité.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. The classical approach to the Neumann problem for a nonlinearly elastic plate

This Note is a sequel to the Note [3], to which we refer for the notations and definitions not recalled here. Let w be a
domain in R? and let

V() :=H' (w) x H'(®) x H* (). (11)
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In the classical Kirchhoff-von Karman-Love theory, the Neumann problem for a nonlinearly elastic plate with middle surface
consists in finding a vector field ¢ = (¢;) € V(w) (the displacement vector field of @) that minimizes over the space V(w)
the functional J : V(w) — R defined for each n = (n;) € V() by

1 £
J() = 5 /{ —0gpot (05Nt + 0o + 05130 M3) (0a g + N + 0xN30873)

4
w
3
+ 5 Qapor d5t N300 773} dw — L(n), (1.2)
where
Lo i= [ pinidor — | quiansdo, (13)
w w

In (1.2), € > 0 denotes half of the thickness of the plate, and the constants aygs¢, which denote the components of the
two-dimensional elasticity tensor of the plate, satisfy

Ggporlorlap 24M2|taﬂ|2 for all (tap) egzs (1.4)
o.p

for some constant u > 0 (one of the Lamé constants of the constituting material of the plate, assumed to be homogeneous
and isotropic; the reference configuration @ x [—¢, €] of the plate is assumed to be a natural state). In the linear form
L:V(w) — R defined by (1.2), the functions p; € L?(w) and g, € L?(w) are given (they represent the resultants of the
forces that are applied to the plate).
The objective of this Note is to establish the existence of a solution to this minimization problem, by means of a refor-
mulation of this minimization problem in terms of the new unknowns
Eqp = %(aan,g + 8pMa + dan3dpn3) € L2 (@) and  Fupi=dupn3 € L2(0), o,B=1,2, (1.5)

i.e., by means of an intrinsic approach.
Complete proofs will be found in [4].

2. Necessary conditions for the existence of a minimizer

If the plate is linearly elastic, i.e., if the nonlinear functions Eyg defined in (1.4) are replaced by their linear parts

1
€up 325(30177/3"’8/97701)7 o, f=1,2, (2.1)

the functional J of (1.2) is replaced by a quadratic functional. In this case, it is clear that a necessary (and in effect sufficient)
condition for the existence of a minimizer of this quadratic functional over the space V (w) of (1.1) is that the applied forces
be such that L(n) = 0 for all the vector fields 5 = (1;) € V() that satisfy

1 .

E(Banﬂ+8ﬁna):0 and dypn3=0 inow. (2.2)

It is therefore natural that we likewise begin by identifying necessary conditions for the existence of a minimizer of the
functional ] of (1.2) over the space V(w) defined in (1.1) (like in the linear case, these conditions will eventually turn out
to be also sufficient when the norms | pe|l;2(,) are small enough; cf. Theorem 4.1).

In what follows, M?,§% §%, and S2 respectively designate the set of all 2 x 2 real matrices, and of all symmetric,
non-negative definite symmetric, and positive-definite symmetric, 2 x 2 real matrices.

Theorem 2.1. In order that
infy e V(w)J (1) > —o0, (2.3)

it is necessary that the vector fields

p=(py.p3):=(pi)) eL*(w) and qy:=(qe) € L*(w)

satisfy the following relations. First,

/ p(y)dw =0. (2.4)

w
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Second, define the matrix

A(py) = / Py’ dw e M2, (2.5)

[0

Then one of the following three mutually exclusive conditions is satisfied. If A(py) = 0, then

py=0ae inw and /(pgy—qH(y))da)zo. (2.6)

w

If Ker A(py) # {0}, then

A(py) €S%. py € (KerA(pyy)) " ae.inw and /(pgy —qu(y)) do € (Ker A(py)) " ae. in o. 2.7)

w

If A(py) # 0 and Ker A(py) = {0}, then
A(py) €S2. (2.8)

Sketch of proof. In [3, Theorem 2.1], we showed that, if two vector fields #§ = (i, 3) € V(@) and n = (ny, n3) € V(w)
satisfy

1 . - .. 1 N .

E(aanﬁ + 0p7o + 0a]30p7)3) = E(Banﬁ + 3p7a + dan3dpn3) and  dupils = dupn3 in L*(w),
then

- 1

ny)=ny)+a+berny—n3(y)d+d-ye— §(d~y)d for almost all y € w,

for some a € R3 b € R, and d € R?, where (e); := 8i3. The proof thus amounts to finding necessary and sufficient conditions
guaranteeing that the following two conditions simultaneously hold. First,

sup{L(a+be nid);acR3 b e R} < +oo. (2.9)
Second,

sup{L(r(d, n3));d € R*} < +oo foreachy e V(w), (2.10)
where

1
r(d, n3) = —n3d+ (d - id)e — E(d -id)d e R3.
Since {a + be A id;a € R3,b € R} is a vector space, condition (2.9) is equivalent to
L@a+benid)=0 forallacR>andbeR.

Since

L(a+beAid)=fp(y)-adw+b/(—p1yz+p2y1)dw,
w

w

it follows that (2.9) is satisfied if and only if

/p(y)dw:O and A(py) :=/pH(y)dea)eS2. (211)

w w

It is easily verified that, for each d € R? and each 5 € V (w),

1
L(rd,n3)=d- (S(p,qH, n3) — EA(pH)d), (212)
where

S(P. Q. 113) = / (13(0)Y — 4u(y) — PR () dw € B2, (213)

w
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If A(py) #0, assume that there exists a vector §* € (Ker A(py))* such that § - A(py)8+ < 0. Then relations (2.10)
cannot hold since

sup{téL S(P . m3) — 28 A(pmaL} = +00.

teR 2

Therefore, the symmetric matrix A(py) is necessarily either positive-definite if it is invertible, or non-negative-definite if it is singular.
If A(py) is singular (in which case A(py) € 822 ), let § € Ker A(py) be such that § # 0. Expressing that (2.10) must hold

in particular for any vector d of the form d =t§,t € R, then shows that, for each 5 € V (w), the vector s(p, qy, n3) must be

orthogonal to 8. In other words, if A(py) is singular, then

s(p.qy.M3) € (KerA(pH))L for each € V (w). (2.14)

We now show that, conversely, if either A(py) € SZ>, or A(py) € Sé is singular and relation (2.14) holds, then relation
(2.10) holds. First, we note that, if A(py) =0, then s(p, qy, n3) =0 for each 5 € V(w) by (2.12); hence L(r(d, n3)) =0 for
each 7 € V(w) and thus (2.10) holds in this case. Second, assume that A(py) # 0. Given any vector d € R?, let d =6 + 5t
with é € Ker A(py) and 5t e (Ker A(py))*. Then

1 A
L(rd, n3)) =8 -s(p.qy. n3) — Eal (Apy)8t) < |s(p.qy. n3)|[6"] - 5|6L|2,

where | - | denotes the Euclidean norm and A > 0 denotes the smallest nonzero eigenvalue of the matrix A(py). Hence
supger2 L(r(d, n3)) < 400 for each 5 € V(w), i.e,, (2.10) also holds in this case.

The specific form of the vector s(p, qy,n3) (cf. (2.13)) then implies that relations (2.14) hold for all € V(w) if and
only if fw(pgy —qy(y)dw € (Ker A(py))* and py € (Ker A(py))* ae. in w (hence py =0 ae. in w if A(py) =0). This
completes the proof. O

3. The intrinsic approach to the Neumann problem for a nonlinearly elastic plate

We now recast the minimization problem infycy ) J(1), where the space V(w) and the functional J: V(w) — R are
defined in (1.1)-(1.2), as a minimization problem in terms of the new unknowns Eqypg € L*(w) and Fop € L%(w) defined in
(1.5). Crucial to this objective is the following result from [3]:

Theorem 3.1. Let @ be a simply-connected domain in R2. Define the space

E(w) := {(E, F) € L?(®) x L*(@); %1 Eap + dapEor — duo Epr — OprEao = Fao Fpr — FapFor in H? (@)

and 35 Fop = dpFac in H ' (@)} (31)

Then, given any (E, F) € E(w), there exists a unique vector field

neViw) = {n —m)e V(w>;/ndw=o,/aan3 do =0, /(31772 - 32771)dw=0} (32)

w w w

that satisfies

1 .

> (atip + 9pna + 0a1130pm3) = Eap  in L% (@), (33)

dapns = Fap inL*(w). (3.4)

Some care must be exercised in applying this result however: Given a vector field € V(w), the number J() is not
defined by the two fields E = (Eyg) and F = (Fyp) defined in (1.5), because of the linear form L of (1.3). As shown in the

next theorem (whose proof relies on simple computations), the remedy consists in introducing a vector §* in the subspace
(Ker A(py))* of R? as an additional variable (the matrix A(py) € Sé is defined in (2.5)).

Theorem 3.2. Given any i € V (), let §° € V°(w) be the unique vector field that satisfies (Theorem 3.1)

1 1 .
> (0 + 95715 + Ban3063) = 5 (Banp + 9pna + da130p73)  and  Bapns =dapns inL*(@), (3.5)

so that (cf. [3, Theorem 2.1]),

17=n0+a+be/\id—n3d+(d'id)e—%(d-id)d (3.6)
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forsomea € R3,b € R, and d € R2. For each d € R? and each 3 € H2(w), let

1
rd,n3) :=—n3d+ (d-id)e — E(d -id)d. (3.7)
Then

Ja = J(n°) — L(r(8*+. n9)), (3.8)

where, for each d € R, the vector 8+ denotes the projection of d onto the subspace (Ker A(p o)t of R%

Let the functional 7 : E(w) x (Ker A(py))* — R be defined for each ((E, F), §*) € E(w) x (Ker A(py))* by

3
J((E,F),§):= % /{gaaﬁmlsmlsaﬂ + %aaﬂmFﬂF(w}dw — L(®(E, F)) — L(r(8+, @3(E, F))), (3.9)

where @ = (®;) : E(w) — V%) is the nonlinear bijection defined for each (E, F) € E(w) by ®(E, F) :=n°, where 30 is the
unique element in the space V%(w) that satisfies Eqs. (3.3)-(3.4) (Theorem 3.1). Then the intrinsic approach to the Neumann
problem for a nonlinearly elastic plate consists in minimizing the function ;7 of (3.9) over the set E(w) x (Ker A(py))*.

Note that, expressed in terms of 170 =@ (E, F), the last two terms in (3.9) respectively become:

L(d)(E,F)):/p-nOda)—qu~Vngda), (3.10)
1
L(r(8", ®3(E, F))) = 8" / (P3y — @i — n3py) do — 267 (A(p1)8"). (311)

Note that the additional variable 8- vanishes when A(py) =0, in which case the functional 7 of (3.9) reduces to its first
two terms. But, even when A(py) # 0, it is still possible to define a minimization problem solely in terms of the variable
(E, F) € E(w). To this end, notice that, for a given (E, F) € E(w), or equivalently for a given 7° € VO (w), there exists a
unique (Ker A(py))" that minimizes the functional defined by

8- (KerA(py)) CR> — J((F,F),8")€R,

since this quadratic functional is positive-definite in view of (3.11). Hence it is equivalent to minimize the functional 7 :
E(w) — R defined for each (E, F) € E(w) by

J(E,F):= inf  J((E,F),8").
ste(Ker A(py))t

4. Existence theorem

The next result constitutes the main result of this Note.

Theorem 4.1. Assume that the vector fields p € L*(w) and qy € L?(w) satisfy condition (2.4) and one of the conditions (2.6), (2.7),
or (2.8). Let the functional J : E(w) x (Ker A(py))*~ — R be defined as in (3.9). Then, if the norm || py 12 IS small enough, there

exists (E, F),8") € E(w) x (Ker A(py))™* such that
J((E, F),§) =inf{J((E, F),§%): ((E, F), ") € E(w) x (Ker A(py))"}. (41)

Sketch of proof. (i) In [3, Theorem 3.1], it was shown that E(w) is sequentially weakly closed in L2(w) x L2(w); hence the
set E(w) x (Ker A(py))* is sequentially weakly closed in L% (w) x L% (@) x R2.

(ii) The functional J is sequentially weakly lower semi-continuous on the set E(w) x (KerA(pH))l.

This property clearly holds for the functional defined by the first term in (3.9). That the mapping @ maps weakly con-
vergent sequences in E(w) into strongly convergent sequences in V%(w) (cf. Theorem 3.1 in [3]; in fact, weak convergence
would suffice here) then implies that the functionals defined by the last two terms in (3.9) (re-expressed for this purpose as
in (3.10)—(3.11)) are also sequentially weakly lower semi-continuous (recall that the variable 81 varies in a subspace of R?).
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(iii) The functional is coercive on E(w) x (Ker A(py))~ if the norm 1Pu L2 is small enough.

In what follows, Cq,...,Cg, denote various constants that are independent of the various functions or vector fields
involved in a given inequality, and the same notation || - || denotes the norm in the spaces L2(w), L®(w), and L2(w). Let the
vector field f € L?(w) be defined by

F) =p3(y)y —qu(y) foralmostally € w.
Then, for any ((E, F), 1) e E(w) x (Ker A(py))™*,

A
J((E, F),8%) = GI|E|? + C2IIF |1 + 5|6L|2 — ol [n%] = 1psl|n3]

— g V03] = 1£ g1 |85 = el |13 8

where A > 0 denotes the smallest nonzero eigenvalue of the matrix A(py) € 822 (recall that §+ =0 if A(py) =0). Thanks
to the relations that led to the nonlinear Korn inequality established in [3] (cf. Egs. (3.2)-(3.5) in [3]),

vl

’

1 T
180 < V8] ane s < Ca | Zony+ 590898

Therefore,

J((E, F),8"%) = GIIEI + (C2 — (Cs + Co/2 Py ) IIFI* + (A/2 — CG/ZHPH”)‘aL‘Z
— CslIpylIEN = Co(Ip3ll + gl IF I — 1 1,1 |8"]-

Hence J is coercive on E(w) x (Ker A(py))~* if |py| is small enough. O

Note that, thanks to Theorem 3.2, the above theorem also establishes the existence of a minimizer of the functional | of
(1.2) in the space V (w) of (1.1), thus extending to the pure Neumann problem the existence result of [2] for the Dirichlet-
Neumann (in which case the norm [|pyll;2(,) Was also assumed to be small enough).

5. A definition of polyconvexity

Inspired by the definition proposed by John Ball in his landmark paper [1], we now propose a definition of polyconvexity
that is directly adapted to the problem considered in this Note (this definition can be extended to more general situations;
cf. [4]). For simplicity, we assume here that A(py) =0.

Let the subset E(w) of L?(w) x L%(w) be defined as in (3.1). Then an integrand W : E(w) — R is said to be polyconvex
if there exists a convex function W : L2(w) x L?(w) such that

W(E,F)=W(E, F) forall (E,F)ecE(w).

Clearly, this assumption is satisfied by the integrand appearing in the first term of the functional 7 of (3.9).

To further substantiate this definition, it will be proved in [4] that the set E(w) is a manifold of class C* in L% (w) x L2(w)
and that the mapping ® ' : VO(w) — E(w) is a C*®-diffeomorphism, where the space V°(w) and the mapping @ are defined
as in Section 3.

The proof of Theorem 4.1 then shows that this notion is indeed the key to establishing the coerciveness and the se-
quential weak lower semi-continuity of the functional 7, just like the notion of polyconvexity introduced by John Ball in
nonlinear three-dimensional elasticity.
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