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If f (x) = ∑
�∈Z

a�e2iπ�x satisfies
∑

ν�1 a2
ν�(ν) < ∞, where � is the Erdös–Hooley function,

we show that the series
∑∞

k=0 ck f (kx) converges for almost every x, whenever the
coefficient sequence verifies the condition

∑
r

(
2r+1∑

j=2r+1

c2
j d( j)(log j)2

)1/2

< ∞,

d being the divisor function. This strongly improves earlier related results.
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Pour toute fonction f (x) = ∑
�∈Z

a�e2iπ�x telle que
∑

ν�1 a2
ν�(ν) < ∞, où � est la fonction

de Erdös–Hooley, nous montrons que la série
∑∞

k=0 ck f (kx) converge presque partout dès
que la suite des coefficients vérifie

∑
r

(
2r+1∑

j=2r+1

c2
j d( j)(log j)2

)1/2

< ∞,

d(n) désignant la fonction des diviseurs de n. Ceci améliore considérablement un certain
nombre de résultats partiels précédemment obtenus.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction – main result

Let T = R/Z � [0,1[. Let e(x) = exp(2iπx), en(x) = e(nx), n ∈ Z. Let f (x) = ∑
�∈Z

a�e� , a−ν = aν,a0 = 0, a = {ak,k � 0} ∈
�2(N). We denote throughout fn(x) = f (nx). Assume f ∈ Lipα(T) for α > 1/2. The convergence properties of the system
{ fn,n � 1} were studied by many authors, among them, Erdös, Kac, Khintchin, Koksma, Marstrand, Wintner and more
recently Berkes, Gaposhkin, Nikishin, . . . . See [2], Chapter 2 to which we also refer for convenience, concerning all re-
sults quoted in this Note. Using Carleson’s theorem, Gaposhkin [4] has showed that if f ∈ Lipα(T), α > 1/2, the series∑∞

k=0 ck fk(x) converges for almost all x ∈ T, for any c = {ck,k � 0} ∈ �2(N). Berkes [1] showed that this result becomes false
if f ∈ Lip1/2(T). For f ∈ Lipα(T) with 0 < α < 1/2, only very partial results exist. The purpose of this Note is to establish a
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quite sharp result valid for considerably much larger classes of functions. Our approach is not based on Carleson’s theorem.
Let d(k) = �{d: d|k} be the divisor function. Introduce the Erdös–Hooley function

�(v) = sup
u∈R

∑
d|v

u<d�eu

1.

Theorem 1.1. Assume that A = ∑
ν�1 a2

ν�(ν) < ∞ and B = ∑
r�1(

∑2r+1

j=2r+1 c2
j d( j)(log j)2)1/2 < ∞. Then the series

∑∞
k=0 ck fk(x)

converges for almost all x ∈ T.

Some comments are necessary. It is well known that the arithmetical properties of the support of c play a crucial role
in the study of this problem. Our series condition B reflects this fact in a very simple way. In particular, if sup{d(v), v ∈
supp{c}} < ∞, condition B reduces to B ′ = ∑

r�1(
∑2r+1

j=2r+1 c2
j (log j)2)1/2 < ∞, which is realized once

∑
j c2

j (log j)b < ∞ for

some b > 3. Let {p j, j � 1} be a sequence of prime numbers. As a consequence, we obtain that the series
∑∞

k=0 γk f (pkx)
converges a.e. whenever

∑
k γ 2

k (log pk)
b < ∞, b > 4 and f verifies the mild condition A < ∞. Concerning this case, we

don’t know comparable results, see however [2], Corollaries 2.3, 2.3*, as well as Theorem 3.2. Notice also that replacing d( j)

by its classical majorant [5], d( j) = O(clog j/ log log j
0 ), c0 > 2, in the definition of B , would provide in general a much weaker

result. These considerations yield the importance of the presence of the factor d( j). Now consider other applications.
Assume that aν = O(ν−α), α > 1/2. As �(v) � d(v) �ε vε , it follows that A < ∞. Moreover B < ∞ once

∑
k c2

kkε < ∞
for some ε > 0. This improves Corollary 2.5* in [2], where it was assumed that

∑
k c2

kk1−α(log k)2 < ∞.
It is trivial that condition A is fulfilled if f ∈ Lipα(T) for some α > 0, since in this case

∑
2s< j�2s+1 a2

j � C2−2sα and

�(v) �ε vε . Thus the series
∑∞

k=0 ck fk(x) converges almost everywhere in particular if
∑

k c2
kkε < ∞ for some ε > 0. This

improves when 0 < α < 1/2 an earlier result due to Gaposhkin, where it was assumed that
∑

k c2
kk1−2α(log k)2β < ∞ for

some β > 1 + 2α.

According to Theorem 2B of [6],
∑

v�y �(v) = O(y log
4
π −1 y). As 4/π − 1 ≈ 0,27324, � has a comparatively slower

mean behavior than d since as is well known,
∑

v�y d(v) ∼ y log y. Using partial summation, we see that condition A < ∞
is also fulfilled once A′ = ∑∞

v=1 v|a2
v−1 − a2

v | log
4
π −1 v < ∞. And this reduces to

∑∞
v=1 a2

v log4/π−1 v < ∞, if a is monotonic.

2. Proof of Theorem 1.1

The introduction of the Erdös–Hooley function �(v) for these questions turns up to be very appropriate. Indeed, it
allows us to propose a surprisingly simple proof. We will use the fact [6, p. 119] that for all positive integers u and v ,
�(uv) � d(u)�(v). Given any set K of positive integers, we denote d(K ,n) = �{d ∈ K : d|n}. By using Plancherel formula,
next Cauchy–Schwarz’s inequality,∥∥∥∥∑

k∈K

ck fk

∥∥∥∥
2

2
=

∞∑
n=1

(∑
k|n

k∈K

a n
k

ck

)2

�
∞∑

n=1

(∑
k|n

k∈K

a2
n
k

c2
k

)
d(K ,n) =

∑
k∈K

c2
k

∞∑
ν=1

a2
νd(K , νk). (1)

Let K ⊂ ]er, er+1]. Then,

∥∥∥∥∑
k∈K

ck fk

∥∥∥∥
2

2
�

∑
k∈K

c2
k

( ∞∑
ν=1

a2
νd

(]er, er+1], νk
))

�
∑
k∈K

c2
k

( ∞∑
ν=1

a2
ν�(νk)

)
�

( ∞∑
ν=1

a2
ν�(ν)

)∑
k∈K

c2
k d(k).

Put X j = ∑ j
u=1 cu fu , t j = B−1 ∑ j

u=1 c2
ud(u). Thus ‖X j − Xi‖2 � (AB)1/2(t j − ti)

1/2, er < i � j < er+1. Using Lemma 8.3.4
from [7] for instance, we deduce that ‖ sup2r<�<k�2r+1 |Xk − X�|‖2 � C Br. Thereby,

∥∥∥∥∥ sup
2r<�<k�2r+1

∣∣∣∣∣
k∑

j=�+1

c j f j

∣∣∣∣∣
∥∥∥∥∥

2

� C B

( ∑
2r< j�2r+1

c2
j d( j)

)1/2

r � C B

( ∑
2r< j�2r+1

c2
j d( j)(log j)2

)1/2

. (2)

Now we can finish the proof using a classical scheme. If S � R and 2R < k < 2S+1, then∣∣∣∣∣
k∑

j=2R+1

c j f j

∣∣∣∣∣ �
∑

R�r�S

sup
2r<h�2r+1

∣∣∣∣∣
h∑

j=2r+1

c j f j

∣∣∣∣∣.
Hence,
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∥∥∥∥∥ sup
k>2R

∣∣∣∣∣
k∑

j=2R+1

c j f j

∣∣∣∣∣
∥∥∥∥∥

2

�
∥∥∥∥∥
∑
r�R

sup
2r<k�2r+1

∣∣∣∣∣
k∑

j=2r+1

c j f j

∣∣∣∣∣
∥∥∥∥∥

2

�
∑
r�R

∥∥∥∥∥ sup
2r<k�2r+1

∣∣∣∣∣
k∑

j=2r+1

c j f j

∣∣∣∣∣
∥∥∥∥∥

2

� C
∑
r�R

(
2r+1∑

j=2r+1

c2
j d( j)(log j)2

)1/2

.

Therefore, by the assumptions made, the oscillation of the sequence {∑k
j=1 c j f j,k � 1} tends to zero almost everywhere.

This achieves the proof.

Final remarks. Suppose that a, c have mutually coprime supports. If K ⊂ support(c), ν ∈ support(a), then d(K , νk) =
d(K ,k), and so (1) becomes ‖∑

k∈K ck fk‖2
2 � ‖ f ‖2

2

∑
k∈K c2

k d(K ,k). By arguing similarly, we also deduce that if B ′ =∑
r�1(

∑2r+1

j=2r+1 c2
j �( j)(log j)2)1/2 < ∞, then the series

∑∞
k=0 ck fk(x) converges a.e. Although we did not appeal to Carleson’s

theorem, it is worth observing that one can always remove from f its “Carleson” component. Let indeed f � = ∑
|a�|>ε�

a�e�

and assume that A′ = ∑
|a�|>ε�

|a�|2/ε� < ∞. Plainly,

sup
V �u�v�W

∣∣∣∣ ∑
u�n�v

cn f �

kn

∣∣∣∣ �
∑

�

∣∣a�
�

∣∣ sup
V �u�v�W

∣∣∣∣ ∑
u�n�v

cne�kn

∣∣∣∣.
By integrating, next using Carleson–Hunt’s theorem [3], we get∥∥∥∥∥ sup

V �u�v�W

∣∣∣∣∣
v∑

n=u

cn f �

kn

∣∣∣∣∣
∥∥∥∥∥

2

�
∑

�

∣∣a�
�

∣∣∥∥∥∥ sup
V �u�v�W

∣∣∣∣ ∑
u�n�v

cne�kn

∣∣∣∣
∥∥∥∥

2
� C A

W∑
k=V

c2
k .

Therefore, the sequence {∑N
n=1 cn f �

kn
, N � 1} has oscillation near infinity tending to zero a.e. In other words, the series∑

n cn f �

kn
converges a.e.
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