Harmonic Analysis/Dynamical Systems

On systems of dilated functions

Sur les systèmes de fonctions dilatées

Michel J.G. Weber
IRMA, 7, rue René-Descartes, 67084 Strasbourg cedex, France

A R T I C L E IN F O

Article history:

Received 17 May 2011
Accepted after revision 4 November 2011
Available online 16 November 2011
Presented by Jean-Pierre Kahane

A B S T R A C T

If $f(x)=\sum_{\ell \in \mathbb{Z}} a_{\ell} e^{2 i \pi \ell x}$ satisfies $\sum_{v \geqslant 1} a_{v}^{2} \Delta(v)<\infty$, where Δ is the Erdös-Hooley function, we show that the series $\sum_{k=0}^{\infty} c_{k} f(k x)$ converges for almost every x, whenever the coefficient sequence verifies the condition

$$
\sum_{r}\left(\sum_{j=2^{r}+1}^{2^{r+1}} c_{j}^{2} d(j)(\log j)^{2}\right)^{1 / 2}<\infty
$$

d being the divisor function. This strongly improves earlier related results.
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Pour toute fonction $f(x)=\sum_{\ell \in \mathbb{Z}} a_{\ell} e^{2 i \pi \ell x}$ telle que $\sum_{v \geqslant 1} a_{v}^{2} \Delta(v)<\infty$, où Δ est la fonction de Erdös-Hooley, nous montrons que la série $\sum_{k=0}^{\infty} c_{k} f(k x)$ converge presque partout dès que la suite des coefficients vérifie

$$
\sum_{r}\left(\sum_{j=2^{r}+1}^{2^{r+1}} c_{j}^{2} d(j)(\log j)^{2}\right)^{1 / 2}<\infty
$$

$d(n)$ désignant la fonction des diviseurs de n. Ceci améliore considérablement un certain nombre de résultats partiels précédemment obtenus.
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction - main result

Let $\mathbb{T}=\mathbb{R} / \mathbb{Z} \simeq\left[0,1\left[\right.\right.$. Let $e(x)=\exp (2 i \pi x), e_{n}(x)=e(n x), n \in \mathbb{Z}$. Let $f(x)=\sum_{\ell \in \mathbb{Z}} a_{\ell} e_{\ell}, a_{-v}=a_{v}, a_{0}=0, \underline{a}=\left\{a_{k}, k \geqslant 0\right\} \in$ $\ell^{2}(\mathbb{N})$. We denote throughout $f_{n}(x)=f(n x)$. Assume $f \in \operatorname{Lip}_{\alpha}(\mathbb{T})$ for $\alpha>1 / 2$. The convergence properties of the system $\left\{f_{n}, n \geqslant 1\right\}$ were studied by many authors, among them, Erdös, Kac, Khintchin, Koksma, Marstrand, Wintner and more recently Berkes, Gaposhkin, Nikishin,.... See [2], Chapter 2 to which we also refer for convenience, concerning all results quoted in this Note. Using Carleson's theorem, Gaposhkin [4] has showed that if $f \in \operatorname{Lip} \alpha(\mathbb{T}), \alpha>1 / 2$, the series $\sum_{k=0}^{\infty} c_{k} f_{k}(x)$ converges for almost all $x \in \mathbb{T}$, for any $\underline{c}=\left\{c_{k}, k \geqslant 0\right\} \in \ell^{2}(\mathbb{N})$. Berkes [1] showed that this result becomes false if $f \in \operatorname{Lip}_{1 / 2}(\mathbb{T})$. For $f \in \operatorname{Lip}_{\alpha}(\mathbb{T})$ with $0<\alpha<1 / 2$, only very partial results exist. The purpose of this Note is to establish a

[^0]quite sharp result valid for considerably much larger classes of functions. Our approach is not based on Carleson's theorem. Let $d(k)=\sharp\{d: d \mid k\}$ be the divisor function. Introduce the Erdös-Hooley function
$$
\Delta(v)=\sup _{u \in \mathbb{R}} \sum_{\substack{d \mid v \\ u<d \leqslant e u}} 1 .
$$

Theorem 1.1. Assume that $A=\sum_{v \geqslant 1} a_{v}^{2} \Delta(\nu)<\infty$ and $B=\sum_{r \geqslant 1}\left(\sum_{j=2^{r}+1}^{2^{r+1}} c_{j}^{2} d(j)(\log j)^{2}\right)^{1 / 2}<\infty$. Then the series $\sum_{k=0}^{\infty} c_{k} f_{k}(x)$ converges for almost all $x \in \mathbb{T}$.

Some comments are necessary. It is well known that the arithmetical properties of the support of \underline{c} play a crucial role in the study of this problem. Our series condition B reflects this fact in a very simple way. In particular, if $\sup \{d(v), v \in$ $\operatorname{supp}\{\underline{c}\}\}<\infty$, condition B reduces to $B^{\prime}=\sum_{r \geqslant 1}\left(\sum_{j=2^{r}+1}^{2^{r+1}} c_{j}^{2}(\log j)^{2}\right)^{1 / 2}<\infty$, which is realized once $\sum_{j} c_{j}^{2}(\log j)^{b}<\infty$ for some $b>3$. Let $\left\{p_{j}, j \geqslant 1\right\}$ be a sequence of prime numbers. As a consequence, we obtain that the series $\sum_{k=0}^{\infty} \gamma_{k} f\left(p_{k} x\right)$ converges a.e. whenever $\sum_{k} \gamma_{k}^{2}\left(\log p_{k}\right)^{b}<\infty, b>4$ and f verifies the mild condition $A<\infty$. Concerning this case, we don't know comparable results, see however [2], Corollaries 2.3, 2.3*, as well as Theorem 3.2. Notice also that replacing $d(j)$ by its classical majorant [5], $d(j)=\mathcal{O}\left(c_{0}^{\log j / \log \log j}\right), c_{0}>2$, in the definition of B, would provide in general a much weaker result. These considerations yield the importance of the presence of the factor $d(j)$. Now consider other applications.

Assume that $a_{v}=\mathcal{O}\left(v^{-\alpha}\right), \alpha>1 / 2$. As $\Delta(v) \leqslant d(v) \ll_{\varepsilon} v^{\varepsilon}$, it follows that $A<\infty$. Moreover $B<\infty$ once $\sum_{k} c_{k}^{2} k^{\varepsilon}<\infty$ for some $\varepsilon>0$. This improves Corollary 2.5* in [2], where it was assumed that $\sum_{k} c_{k}^{2} k^{1-\alpha}(\log k)^{2}<\infty$.

It is trivial that condition A is fulfilled if $f \in \operatorname{Lip}_{\alpha}(\mathbb{T})$ for some $\alpha>0$, since in this case $\sum_{2^{s}<j \leqslant 2^{s+1}} a_{j}^{2} \leqslant C 2^{-2 s \alpha}$ and $\Delta(v) \ll_{\varepsilon} v^{\varepsilon}$. Thus the series $\sum_{k=0}^{\infty} c_{k} f_{k}(x)$ converges almost everywhere in particular if $\sum_{k} c_{k}^{2} k^{\varepsilon}<\infty$ for some $\varepsilon>0$. This improves when $0<\alpha<1 / 2$ an earlier result due to Gaposhkin, where it was assumed that $\sum_{k} c_{k}^{2} k^{1-2 \alpha}(\log k)^{2 \beta}<\infty$ for some $\beta>1+2 \alpha$.

According to Theorem 2B of [6], $\sum_{v \leqslant y} \Delta(v)=\mathcal{O}\left(y \log ^{\frac{4}{\pi}-1} y\right)$. As $4 / \pi-1 \approx 0,27324, \Delta$ has a comparatively slower mean behavior than d since as is well known, $\sum_{v \leqslant y} d(v) \sim y \log y$. Using partial summation, we see that condition $A<\infty$ is also fulfilled once $A^{\prime}=\sum_{v=1}^{\infty} v\left|a_{v-1}^{2}-a_{v}^{2}\right| \log ^{\frac{4}{\pi}-1} v<\infty$. And this reduces to $\sum_{v=1}^{\infty} a_{v}^{2} \log ^{4 / \pi-1} v<\infty$, if \underline{a} is monotonic.

2. Proof of Theorem 1.1

The introduction of the Erdös-Hooley function $\Delta(v)$ for these questions turns up to be very appropriate. Indeed, it allows us to propose a surprisingly simple proof. We will use the fact [6, p. 119] that for all positive integers u and v, $\Delta(u v) \leqslant d(u) \Delta(v)$. Given any set K of positive integers, we denote $d(K, n)=\sharp\{d \in K: d \mid n\}$. By using Plancherel formula, next Cauchy-Schwarz's inequality,

$$
\begin{equation*}
\left\|\sum_{k \in K} c_{k} f_{k}\right\|_{2}^{2}=\sum_{n=1}^{\infty}\left(\sum_{\substack{k \mid n \\ k \in K}} a_{\frac{n}{k}} c_{k}\right)^{2} \leqslant \sum_{n=1}^{\infty}\left(\sum_{\substack{k \mid n \\ k \in K}} a_{\frac{n}{k}}^{2} c_{k}^{2}\right) d(K, n)=\sum_{k \in K} c_{k}^{2} \sum_{\nu=1}^{\infty} a_{\nu}^{2} d(K, v k) . \tag{1}
\end{equation*}
$$

Let $\left.K \subset] e^{r}, e^{r+1}\right]$. Then,

$$
\left.\left.\left\|\sum_{k \in K} c_{k} f_{k}\right\|_{2}^{2} \leqslant \sum_{k \in K} c_{k}^{2}\left(\sum_{\nu=1}^{\infty} a_{\nu}^{2} d(] e^{r}, e^{r+1}\right], \nu k\right)\right) \leqslant \sum_{k \in K} c_{k}^{2}\left(\sum_{\nu=1}^{\infty} a_{v}^{2} \Delta(\nu k)\right) \leqslant\left(\sum_{\nu=1}^{\infty} a_{v}^{2} \Delta(v)\right) \sum_{k \in K} c_{k}^{2} d(k)
$$

Put $X_{j}=\sum_{u=1}^{j} c_{u} f_{u}, t_{j}=B^{-1} \sum_{u=1}^{j} c_{u}^{2} d(u)$. Thus $\left\|X_{j}-X_{i}\right\|_{2} \leqslant(A B)^{1 / 2}\left(t_{j}-t_{i}\right)^{1 / 2}, e^{r}<i \leqslant j<e^{r+1}$. Using Lemma 8.3.4 from [7] for instance, we deduce that $\left\|\sup _{2^{r}<\ell<k \leqslant 2^{r+1}}\left|X_{k}-X_{\ell}\right|\right\|_{2} \leqslant C B r$. Thereby,

$$
\begin{equation*}
\left\|\sup _{2^{r}<\ell<k \leqslant 2^{r+1}}\left|\sum_{j=\ell+1}^{k} c_{j} f_{j}\right|\right\|_{2} \leqslant C B\left(\sum_{2^{r}<j \leqslant 2^{r+1}} c_{j}^{2} d(j)\right)^{1 / 2} r \leqslant C B\left(\sum_{2^{r}<j \leqslant 2^{r+1}} c_{j}^{2} d(j)(\log j)^{2}\right)^{1 / 2} . \tag{2}
\end{equation*}
$$

Now we can finish the proof using a classical scheme. If $S \geqslant R$ and $2^{R}<k<2^{S+1}$, then

$$
\left|\sum_{j=2^{R}+1}^{k} c_{j} f_{j}\right| \leqslant \sum_{R \leqslant r \leqslant S} \sup _{2^{r}<h \leqslant 2^{r+1}}\left|\sum_{j=2^{r}+1}^{h} c_{j} f_{j}\right| .
$$

Hence,

$$
\begin{aligned}
\left\|\sup _{k>2^{R}}\left|\sum_{j=2^{R}+1}^{k} c_{j} f_{j}\right|\right\|_{2} & \leqslant\left\|\sum_{r \geqslant R} \sup _{2^{r}<k \leqslant 2^{r+1}}\left|\sum_{j=2^{r}+1}^{k} c_{j} f_{j}\right|\right\|_{2} \leqslant \sum_{r \geqslant R}\left\|_{2^{r}<k \leqslant 2^{r+1}} \sup _{j=2^{r}+1}^{k} c_{j} f_{j} \mid\right\|_{2} \\
& \leqslant C \sum_{r \geqslant R}\left(\sum_{j=2^{r}+1} c_{j}^{2} d(j)(\log j)^{2}\right)^{1 / 2}
\end{aligned}
$$

Therefore, by the assumptions made, the oscillation of the sequence $\left\{\sum_{j=1}^{k} c_{j} f_{j}, k \geqslant 1\right\}$ tends to zero almost everywhere. This achieves the proof.

Final remarks. Suppose that $\underline{a}, \underline{c}$ have mutually coprime supports. If $K \subset \operatorname{support}(\underline{c}), v \in \operatorname{support}(\underline{a})$, then $d(K, v k)=$ $d(K, k)$, and so (1) becomes $\left\|\sum_{k \in K} c_{k} f_{k}\right\|_{2}^{2} \leqslant\|f\|_{2}^{2} \sum_{k \in K} c_{k}^{2} d(K, k)$. By arguing similarly, we also deduce that if $B^{\prime}=$ $\sum_{r \geqslant 1}\left(\sum_{j=2^{r}+1}^{2^{r+1}} c_{j}^{2} \Delta(j)(\log j)^{2}\right)^{1 / 2}<\infty$, then the series $\sum_{k=0}^{\infty} c_{k} f_{k}(x)$ converges a.e. Although we did not appeal to Carleson's theorem, it is worth observing that one can always remove from f its "Carleson" component. Let indeed $f^{b}=\sum_{\left|a_{\ell}\right|>\varepsilon_{\ell}} a_{\ell} e_{\ell}$ and assume that $A^{\prime}=\sum_{\left|a_{\ell}\right|>\varepsilon_{\ell}}\left|a_{\ell}\right|^{2} / \varepsilon_{\ell}<\infty$. Plainly,

$$
\sup _{v \leqslant u \leqslant v \leqslant W}\left|\sum_{u \leqslant n \leqslant v} c_{n} f_{k_{n}}^{b}\right| \leqslant \sum_{\ell}\left|a_{\ell}^{b}\right| \sup _{V \leqslant u \leqslant v \leqslant W}\left|\sum_{u \leqslant n \leqslant v} c_{n} e_{\ell k_{n}}\right| .
$$

By integrating, next using Carleson-Hunt's theorem [3], we get

$$
\left\|V \sup _{V \leqslant u \leqslant v \leqslant W}\left|\sum_{n=u}^{v} c_{n} f_{k_{n}}^{b}\right|\right\|_{2} \leqslant \sum_{\ell}\left|a_{\ell}^{b}\right|\left\|_{V \leqslant u \leqslant v \leqslant W} \sup _{u \leqslant n \leqslant v} c_{n} e_{\ell k_{n}} \mid\right\|_{2} \leqslant C A \sum_{k=V}^{W} c_{k}^{2}
$$

Therefore, the sequence $\left\{\sum_{n=1}^{N} c_{n} f_{k_{n}}^{b}, N \geqslant 1\right\}$ has oscillation near infinity tending to zero a.e. In other words, the series $\sum_{n} c_{n} f_{k_{n}}^{b}$ converges a.e.

References

[1] I. Berkes, On the convergence of $\sum_{n} c_{n} f(n x)$ and the Lip $1 / 2$ class, Trans. Amer. Math. Soc. 349 (10) 4143-4158.
[2] I. Berkes, M. Weber, On the convergence of $\sum c_{k} f\left(n_{k} x\right)$, Memoirs of the A.M.S. 201 (943) (2009), vi+72p.
[3] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966) 135-157.
[4] V.F. Gaposhkin, On convergence and divergence systems, Mat. Zametki 4 (1968) 253-260.
[5] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, fifth ed., Clarendon Press, Oxford, 1979.
[6] C. Hooley, A new technique and its application to the theory of numbers, Proc. London Math. Soc. (3) 38 (1979) 115-151.
[7] M. Weber, Dynamical Systems and Processes, IRMA Lectures in Mathematics and Theoretical Physics, vol. 14, European Mathematical Society Publishing House, 2009, xiii+759p.

[^0]: E-mail address: michel.weber@math.unistra.fr.

