

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Differential Topology/Calculus of Variations

Prescribing the Webster scalar curvature on CR spheres

Préscription de la courbure scalaire de Webster sur la sphère CR

Ridha Yacoub

Département de mathématique-informatique, I.P.E.I.M., rue Ibn Al Jazzar, 5019 Monastir, Tunisia

ARTICLE INFO	ABSTRACT
Article history: Received 20 September 2011 Accepted after revision 9 November 2011 Available online 25 November 2011	In this Note, we give two new perturbative results for prescribing the Webster scalar curvature on the $(2n + 1)$ -dimensional sphere endowed with its standard <i>CR</i> structure. The first result generalizes the one obtained by A. Malchiodi and F. Uguzzoni (2002) in [9]. © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Presented by Haïm Brézis	RÉSUMÉ
	Dans cette Note, on donne deux nouveaux résultats perturbatifs pour préscrire la courbure scalaire de Webster sur la sphère de dimension $(2n + 1)$ munie de sa structure <i>CR</i> standard.

Le premier résultat généralise celui obtenu par A. Malchiodi et F. Uguzzoni (2002) dans [9]. © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this Note, we revisit a problem of geometric origin. Namely, let \mathbb{S}^{2n+1} be the unit sphere of \mathbb{C}^{n+1} defined by $\mathbb{S}^{2n+1} = \{\zeta = (\zeta^1, \dots, \zeta^{n+1}) \in \mathbb{C}^{n+1} / |\zeta|^2 = \sum_{j=1}^{n+1} |\zeta^j|^2 = 1\}$ endowed with its standard contact form $\theta = i(\overline{\partial} - \partial) |\zeta|^2 = i \sum_{j=1}^{n+1} \zeta^j d\overline{\zeta^j} - \overline{\zeta^j} d\zeta^j$. The Webster scalar curvature problem resumes to find a contact form $\tilde{\theta} CR$ equivalent to θ such that the associated Webster scalar curvature $R_{\tilde{\theta}} = K$, where K is some given function on \mathbb{S}^{2n+1} . It is equivalent to find a solution u of the following problem:

$$\begin{cases} Lu = Ku^{1+\frac{2}{n}}, \\ u > 0 \quad \text{on } \mathbb{S}^{2n+1} \end{cases}$$
(1)

where $L = \frac{2(n+1)}{n} \Delta_{\theta} + \frac{n(n+1)}{2}$ is the conformal sub-Laplacian (since the Webster scalar curvature of θ is $R_{\theta} = \frac{n(n+1)}{2}$), and Δ_{θ} – denoted also by Δ_{b} in the literature – is the sub-Laplacian operator (the real part of the Kohn Laplacian \Box_{b}) for ($\mathbb{S}^{2n+1}, \theta$). Note that problem (1) is the *CR* counterpart of the scalar curvature problem in the Riemannian setting (see e.g. [2,8,10]).

This problem has been envisaged under perturbation or symmetric hypotheses (see [5] and [9]). Our aim is to handle such a question using some topological and dynamical tools related to the theory of critical points at infinity (see Bahri [1]). Let $K : \mathbb{S}^{2n+1} \longrightarrow \mathbb{R}$ be a C^2 function. We introduce the following assumption:

(N.D) *K* has a finite set of nondegenerate critical points, denoted by \mathcal{K} , such that $\Delta_{\theta} K(y) \neq 0$, $\forall y \in \mathcal{K}$.

E-mail address: ridha.yacoub@ipeim.rnu.tn.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2011.11.007

We introduce the subset:

$$\mathcal{K}^{+} = \left\{ y \in \mathcal{K}; \ -\Delta_{\theta} K(y) > 0 \right\},\tag{2}$$

and we denote by (C.C) the condition:

(**C.C**) Assume that $K(\zeta) = 1 + \varepsilon K_0(\zeta), \forall \zeta \in \mathbb{S}^{2n+1}$, where $K_0 \in \mathcal{C}^2(\mathbb{S}^{2n+1})$ and $|\varepsilon|$ small.

Let ind(K, y) be the Morse index of K at its critical point y. For an integer k, we write $k \in \aleph$, if k satisfies the following condition: For any $y \in \mathcal{K}^+$, we have $2n + 1 - ind(K, y) \neq k + 1$. That is

For example if $k \ge 2n + 1$ then $k \in \aleph$.

Our first existence result generalizes that of [9]:

Theorem 1.1. Let $n \ge 1$, $K : \mathbb{S}^{2n+1} \to \mathbb{R}$ a C^2 positive function satisfying (**N.D**) and (**C.C**). If

$$\max_{k\in\mathbb{N}} \left| 1 - \sum_{\substack{y\in\mathcal{K}^+\\2n+1-ind(K,y)\leqslant k}} (-1)^{2n+1-ind(K,y)} \right| \neq 0$$
(4)

then, for $|\varepsilon|$ small enough, there exists a solution for problem (1).

As a corollary we find the result of [9]:

Corollary 1.2. Let $n \ge 1$. $K : \mathbb{S}^{2n+1} \to \mathbb{R}$ a C^2 positive function satisfying (**N**.**D**) and (**C**.**C**). If

$$\sum_{y \in \mathcal{K}^+} (-1)^{2n+1 - ind(K, y)} \neq 1,$$
(5)

then, for $|\varepsilon|$ small enough, there exists a solution for problem (1).

Our second existence result is not based on the count-indices formula. We introduce

for
$$p \in \mathbb{N}$$
, $\mathcal{K}_p^+ = \{ y \in \mathcal{K}^+; ind(K, y) = p \}$, and $\mathcal{K}_k^+ = \mathcal{K}^+ \setminus \mathcal{K}_0^+$. (6)

Theorem 1.3. Let $n \ge 1$, $K : \mathbb{S}^{2n+1} \to \mathbb{R}$ a C^2 positive function satisfying (**N**.**D**), (**C**.**C**), and (**A**) $\exists \tilde{y} \in \mathcal{K}_1^+$, such that, $K(\tilde{y}) \ge K(z)$, $\forall z \in \mathcal{K}_2^+$.

Then, provided that $|\varepsilon|$ is small enough, there exists a solution for problem (1).

2. Variational framework. Lack of compactness. Proofs of the results

Let S^1 be the completion of $C^{\infty}(\mathbb{S}^{2n+1})$ for the norm $||u||^2 = \int_{\mathbb{S}^{2n+1}} Lu.u \,\theta \wedge d\theta^n$. Let $\sum = \{u \in S^1/||u|| = 1\}$ and $\sum^+ = \{u \in \sum /u \ge 0\}$. The Euler functional associated to problem (1) on S^1 is:

$$J(u) = \frac{\|u\|^2}{(\int_{\mathbb{S}^{2n+1}} K |u|^{2+\frac{2}{n}} \theta \wedge d\theta^n)^{\frac{n}{n+1}}}$$

One knows that if v is a critical point of J in \sum^+ , then $u = J(v)^{\frac{n}{2}}v$ is a solution for (1) in S^1 , and hence the contact form $\tilde{\theta} = u^{\frac{2}{n}}\theta$ has its Webster scalar curvature $R_{\tilde{a}} = K$.

Problem (1) is known to be delicate because the inclusion $S^1 \hookrightarrow L^{\frac{2(n+1)}{n}}$ is continuous but not compact, and the functional J does not satisfy the Palais–Smale condition. In order to characterize the sequences failing the Palais–Smale condition, we recall some definitions and notations. Let ω be the solution of Yamabe problem on the Heisenberg group \mathbb{H}^n , defined for all $\xi = (z, t)$ in \mathbb{H}^n by $\omega(\xi) = |1 + |z|^2 - it|^{-n}$. For each $(g, \lambda) \in \mathbb{H}^n \times (0, \infty)$ we obtain the other solutions $\omega_{(g,\lambda)}(\xi) = \lambda^n \omega(\lambda g^{-1}\xi)$. Now, for each $(a, \lambda) \in \mathbb{S}^{2n+1} \times (0, \infty)$, we introduce the solution of Yamabe problem on \mathbb{S}^{2n+1} :

$$\delta_{(a,\lambda)}(\zeta) = \frac{1}{|1+\zeta^{n+1}|^n} \omega_{(F(a),\lambda)} \circ F(\zeta)$$
⁽⁷⁾

where *F* is a biholomorphic map from $\mathbb{S}^{2n+1} \setminus \{a \text{ point}(\neq a)\}$ onto \mathbb{H}^n , induced by the Cayley Transform (see [7,9]). The sphere is globally *CR* equivalent to itself, then, standard arguments and results of [3] and [4] (where the case of manifolds locally *CR*-equivalent to the sphere was treated) are valid here. Since we are arguing by contradiction we have

Proposition 2.1. Assume (1) has no solution. The only critical points at infinity of J in \sum^+ are combinations of q masses $(q \ge 1)$, $\sum_{i=1}^{q} \delta_{(y_i,+\infty)} := (y_1, \ldots, y_q)_{\infty}$, where the y_i 's are distinct in \mathcal{K}^+ .

The Morse index of $(y_1, ..., y_q)_{\infty}$ is $m(y_1, ..., y_q)_{\infty} = q - 1 + \sum_{i=1}^q 2n + 1 - ind(K, y_i)$.

Proof of Theorem 1.1. Since $K = 1 + \varepsilon K_0$, for $\varepsilon = 0$ we obtain the Yamabe functional J_0 , which possesses a (2n + 2)-dimensional manifold of critical points $\mathcal{Z} = \{\delta_{(a,\lambda)}, (a,\lambda) \in \mathbb{S}^{2n+1} \times (0,\infty)\}$. For $\beta \in \mathbb{R}$, let $J^{\beta} = \{u \in \sum^+, J(u) \leq \beta\}$. Observe that, since K_0 is bounded, $J(u) = J_0(u)(1 + O(\varepsilon))$, where $O(\varepsilon)$ is independent of u and tends to 0 with ε . Readily we derive:

Lemma 2.1. Let $\eta > 0$, for $|\varepsilon|$ small enough, we have $J^{S+\eta} \subset J_0^{S+2\eta} \subset J^{S+3\eta}$.

Here *S* is the best Sobolev constant $S = J_0(\delta_{(a,\lambda)}) = \min J_0$ on \sum^+ . On the other hand, the critical level $J((y_1, \ldots, y_q)_\infty) = S(\sum_{i=1}^q 1/K(y_i)^n)^{1/(n+1)}$ tends to $Sq^{1/(n+1)}$ as $\varepsilon \to 0$, since $K(y_i) = 1 + \varepsilon K_0(y_i)$. Taking $\eta = S/4$, we can assume $|\varepsilon|$ sufficiently small that: critical points at infinity made of two bubbles or more are above the level $S + 3\eta$, and those made of a single bubble are below the level $S + \eta$. Therefore, *J* has no critical points at infinity in the set $J_{S+\eta}^{S+3\eta} = \{u \in \Sigma^+, S + \eta \leq J(u) \leq S + 3\eta\}$. Since, arguing by contradiction, we assume that (1) has no solution, it follows that $J_{S+\eta}^{S+3\eta} \simeq J^{S+\eta}$, where \simeq denotes retracts by deformation. Using Lemma 2.1, we have that $J_0^{S+2\eta} \simeq J^{S+\eta}$. Now, we claim that $J_0^{S+2\eta}$ is a contractible set. Indeed, from what precedes, it is sufficient to prove that $J_0^{S+2\eta}$ is a contractible set. Let $u_0 \in J_0^{S+2\eta}$, and $s \mapsto u(s, u_0)$ the Yamabe flow line. The flow verifies the following equation:

$$\begin{cases} \frac{\partial u}{\partial s} = -\partial J_0(u), \\ u(0) = u_0. \end{cases}$$

Using the results of [6], we know that the Palais–Smale condition is satisfied for the above equation for all s > 0. When $s \to +\infty$, $u(s, u_0)$ converges to a single mass in \mathcal{Z} . Thus, $J_0^{S+2\eta} \simeq \mathcal{Z}$. It follows that $J_0^{S+2\eta}$ is a contractible set, since \mathcal{Z} is a contractible set. Our claim follows. Now, let ℓ be the integer for which $\max_{k\in\mathbb{N}} |1 - \sum_{\{y\in\mathcal{K}^+, m(y)_\infty \leqslant k\}} (-1)^{m(y)_\infty}| \neq 0$ is achieved. Here $m(y)_\infty = 2n + 1 - ind(K, y)$ is the Morse index of the critical point at infinity $(y)_\infty$. Let $X_\ell^\infty = \bigcup_{\{y\in\mathcal{K}^+, m(y)_\infty \leqslant \ell\}} \overline{W_u(y)_\infty}$. It is a stratified set of top dimension ℓ , and, since it is made of unstable manifolds of critical points at infinity of a single mass, we derive from what precedes that $X_\ell^\infty \subset J^{S+\eta}$. Observe that X_ℓ^∞ is contractible in $J^{S+\eta}$, since $J^{S+\eta}$ is a contractible set. More precisely, there exists a contraction $h: [0, 1] \times X_\ell^\infty \to J^{S+\eta}$, i.e. h continuous and such that h(0, u) = u and $h(1, u) = \tilde{u}$ a fixed point in X_ℓ^∞ . Let $H = h([0, 1] \times X_\ell^\infty)$. H is a contractible stratified set of dimension $\ell + 1$. Using the flow lines of $-\partial J$, and the fact that $H \subset J^{S+\eta}$, we have $H \simeq \bigcup_{\{y\in\mathcal{K}^+, m(y)_\infty \leqslant \ell+1\}} W_u(y)_\infty$. Now, using the fact that $\ell \in \aleph$, there are no critical points at infinity of Morse index $\ell + 1$. We derive that $H \simeq X_\ell^\infty$. Then, taking the Euler characteristic of both sides, we derive that $1 = \sum_{\{y\in\mathcal{K}^+, m(y)_\infty \leqslant \ell\}} (-1)^{m(y)_\infty}$. This contradicts the assumption of Theorem 1.1. \Box

Proof of Theorem 1.3. Arguing by contradiction, we assume that (1) has no solution. Let ∂ be the boundary operator in the sense of Floer–Milnor homology as introduced in [11]. We recall that singular chains, in this homology, are generated by unstable manifolds of critical points of *J*, and, if $(y)_{\infty}$ is a critical point at infinity of Morse index $m(y)_{\infty}$, then

$$\partial \left(W_u(y)_{\infty} \right) = \sum_{\{(z)_{\infty}; \ m(z)_{\infty} = m(y)_{\infty} - 1\}} i \left((y)_{\infty}, (z)_{\infty} \right) W_u(z)_{\infty}$$

where $i((y)_{\infty}, (z)_{\infty})$ is the intersection number of $W_u(y)_{\infty}$ and $W_s(z)_{\infty}$, the unstable (resp. stable) manifold of $(y)_{\infty}$ (resp. $(z)_{\infty}$), with respect of $-\partial J$ (see [11]).

Taking $y = \tilde{y}$, defined in assumption (**A**) of Theorem 1.3, $W_u(\tilde{y})_\infty$ is a manifold of dimension $m(\tilde{y})_\infty = 2n$, and satisfies $W_u(\tilde{y})_\infty \cap W_s(z)_\infty = \emptyset$ for any $(z)_\infty$ of Morse index 2n - 1, since under assumption (**A**), $J((\tilde{y})_\infty) \leq J((z)_\infty)$ for all $z \in \mathcal{K}_2^+$. It follows that $\partial(W_u(\tilde{y})_\infty) = 0$, and hence $W_u(\tilde{y})_\infty$ defines a cycle in $C_{2n}(X^\infty)$ the group of 2*n*-dimensional chains of $X^\infty = \bigcup_{y \in \mathcal{K}_*^+} W_u(y)_\infty$. Note that X^∞ is a stratified set of top dimension 2n, since the highest Morse index of critical points at infinity $(y)_\infty$ where $y \in \mathcal{K}_*^+$, is less than or equal to 2n. But, $W_u(\tilde{y})_\infty$ cannot be in the boundary of a 2*n*-dimensional chain of X^∞ . Therefore $W_u(\tilde{y})_\infty$ defines a homological class of dimension 2n which is nontrivial in X^∞ . Denoting by $H_{2n}(X^\infty)$ the 2*n*-dimensional homology group of X^∞ , we then have

$$H_{2n}(X^{\infty}) \neq 0. \tag{8}$$

Using the same arguments and notations of the proof of Theorem 1.1, we derive that X^{∞} is contractible in $J^{S+\eta}$ which retracts by deformation on X^{∞} . It follows that X^{∞} is a contractible set, and therefore $H_k(X^{\infty}) = 0$, $\forall k \ge 1$, which is in contradiction with (8). This ends the proof of Theorem 1.3. \Box

References

- [1] A. Bahri, Critical Point at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser., vol. 182, Longman, 1989.
- [2] A. Bahri, J.-M. Coron, The scalar curvature problem on the standard three-dimensional sphere, J. Funct. Anal. 95 (1) (1991) 106-172.
- [3] H. Chtioui, M.O. Ahmedou, R. Yacoub, Topological methods for the prescribed Webster scalar curvature problem on CR manifolds, Diff. Geom. Appl. 28 (2010) 264–281.
- [4] H. Chtioui, M.O. Ahmedou, R. Yacoub, Existence and multiplicity results for the prescribed Webster scalar curvature problem on three CR manifolds, J. Geom. Anal., doi:10.1007/s12220-011-9267-z, in press.
- [5] V. Felli, F. Uguzzoni, Some existence results for the Webster scalar curvature problem in presence of symmetry, Annali di Matematica 183 (2004) 469–493.
- [6] N. Gamara, R. Yacoub, CR Yamabe conjecture the conformally flat case, Pac. J. Math. 201 (1) (2001) 121-175.
- [7] D. Jerison, J.M. Lee, The Yamabe problem on CR manifolds, J. Differential Geometry 25 (1987) 167-197.
- [8] A. Malchiodi, The scalar curvature problem on S^n : an approach via Morse theory, Calc. Var. PDEs 14 (2002) 429–445.
- [9] A. Malchiodi, F. Uguzzoni, A perturbation result for the Webster scalar curvature problem on the CR sphere, J. Math. Pures Appl. 81 (2002) 983-997.
- [10] R. Schoen, D. Zhang, Prescribed scalar curvature problem on the *n*-sphere, Calc. Var. PDEs 4 (1996) 1-25.
- [11] R. Yacoub, On the scalar curvature equations in high dimension, Adv. Nonlin. Stud. 2 (4) (2002) 373-393.