ELSEVIER

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Group Theory

Kirillov's formula and Guillemin-Sternberg conjecture

Formule de Kirillov et conjecture de Guillemin-Sternberg

Michel Duflo, Michèle Vergne

Université Denis-Diderot-Paris 7, institut de mathématiques de Jussieu, C.P. 7012, 2 place Jussieu, 75251 Paris cedex 05, France

ARTICLE INFO

Article history

Received and accepted 8 November 2011 Available online 21 November 2011

Presented by Michèle Vergne

ABSTRACT

Let G be a connected reductive real Lie group, and H a compact connected subgroup. Let M be a coadjoint admissible orbit of G and let Π be one of the unitary irreducible representations of G attached to M by Harish-Chandra. Using the character formula for Π , we give a geometric formula for the multiplicities of the restriction of Π to H, when the restriction map $p:M\to \mathfrak{h}^*$ is proper. In particular, this gives an alternate proof of a result of Paradan

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soit G un groupe de Lie réel réductif connexe, et H un sous-groupe compact connexe. Soit M une orbite coadjointe admissible de G et soit Π une des représentations unitaires irréductibles associées à M par Harish-Chandra. Grâce aux formules de caractère pour Π , nous donnons une formule géométrique pour les multiplicités de la restriction de Π à H lorsque l'application de restriction $p:M\to \mathfrak{h}^*$ est propre. En particulier, ceci donne une autre démonstration d'un résultat de Paradan.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

When M is a compact pre-quantizable Hamiltonian manifold for the action of a compact connected Lie group H with moment map $p: M \to \mathfrak{h}^*$, Guillemin and Sternberg defined a quantization of M, which is a virtual representation of H. They proposed formulae for the multiplicities in terms of the reduced "manifolds" $p^{-1}(v)/H(v)$. These formulae have been proved in [7], and in the close setting of quantization with ρ -correction (also called $Spin_c$ -quantization) in [9]. In this Note we consider only quantization with ρ -correction.

When M is not compact, it is not clear how to define a quantization of M. In the case where M is a coadjoint admissible orbit, closed and of maximal dimension, of a real connected reductive Lie group G, the representations Π associated to M by Harish-Chandra are the natural candidates for the quantization of M. When H is the maximal compact subgroup of G, Paradan [8] has shown that the motto "quantization commutes with reduction" still holds for these non-compact Hamiltonian manifolds. We give another proof using character formulae. It holds for any connected compact subgroup H, provided the moment map $P: M \to \mathfrak{h}^*$ is proper. However, our proof uses a special feature of these manifolds M: their \hat{A} -genus is trivial. So it does not extend to representations associated to coadjoint orbits of G which are not of maximal dimension.

2. Box splines and Dahmen-Micchelli deconvolution

Let V be a finite dimensional real vector space, $\Lambda \subset V$ a lattice, and $\mathrm{d} v$ the associated Lebesgue measure. For $v \in V$, we denote by δ_V the δ measure at v, by ∂_V the differentiation in the direction v. Let $\Phi = [\alpha_1, \alpha_2, \ldots, \alpha_N]$ be a list of elements in Λ and let $\rho_\Phi = \frac{1}{2} \sum_{\alpha \in \Phi} \alpha$. The centered box spline $B_{\mathcal{C}}(\Phi)$ is the measure on V such that, for a continuous function F on V,

$$\langle B_c(\Phi), F \rangle = \int_{-\frac{1}{2}}^{\frac{1}{2}} \cdots \int_{-\frac{1}{2}}^{\frac{1}{2}} F\left(\sum_{i=1}^N t_i \alpha_i\right) dt_1 \cdots dt_N.$$

The Fourier transform $\hat{B}_c(\Phi)(x)$ is the function $\prod_{\alpha \in \Phi} \frac{e^{i(\alpha,x)/2} - e^{-i(\alpha,x)/2}}{i(\alpha,x)}$. Define a series of differential operators on V by

$$\hat{A}(\Phi) = \prod_{\alpha \in \Phi} \frac{\partial_{\alpha}}{e^{\frac{1}{2}\partial_{\alpha}} - e^{-\frac{1}{2}\partial_{\alpha}}} = 1 - \frac{1}{24} \sum_{\alpha} (\partial_{\alpha})^{2} + \cdots.$$

We assume now that Φ generates V. A vector $\epsilon \in V$ is called generic if ϵ does not lie on any hyperplane U spanned by elements of Φ .

We choose some $\kappa \in V$. Usually, the choice of κ is clear from the context, and we do not show the dependence on κ . A point $v \in V$ is called Φ -regular if v does not lie on any affine hyperplane $\rho_{\Phi} + \kappa + \lambda + U$ where $\lambda \in \Lambda$. A connected component \mathfrak{c} of the set V_{reg} of Φ -regular elements is called an alcove.

A piecewise polynomial function \mathbf{h} on V is a function defined on the open set V_{reg} and such that, for any alcove \mathfrak{c} , there exists a polynomial function $h^{\mathfrak{c}}$ which coincide with \mathbf{h} on \mathfrak{c} . If D is a differential operator (or a series of differential operators) with constant coefficients, we can define the piecewise differentiation $\mathbf{h} \mapsto D\mathbf{h}$, by applying D on each alcove to the function \mathbf{h} . Let ϵ generic. We define a function $\lim_{\epsilon} \mathbf{h}$ on V by $\lim_{\epsilon} \mathbf{h}(v) = h^{\mathfrak{c}}(v)$, where \mathfrak{c} is the alcove such that $v + t\epsilon \in \mathfrak{c}$ for small t > 0. We can also translate a piecewise polynomial function by an element ξ of V (this will change κ to $\kappa + \xi$).

Consider the box spline $B_c(\Phi)$. For each alcove (here $\kappa=0$) \mathfrak{c} , there exists a polynomial function $\mathfrak{b}^{\mathfrak{c}}$ on V such that the measure $B_c(\Phi)$ coincide with $\mathfrak{b}^{\mathfrak{c}}(v) \, \mathrm{d} v$ on \mathfrak{c} . Thus the collection of functions $\mathfrak{b}^{\mathfrak{c}}$ define a piecewise polynomial function \mathfrak{b} .

Denote by $P = \kappa + \Lambda$ the translate of Λ , and $\mathcal{C}(P)$ the space of complex valued functions on P. If $m \in \mathcal{C}(P)$, the function

$$\mathbf{b}(m)(v) = \sum_{\lambda \in P} m(\lambda) \mathbf{b}(v - \lambda)$$

is a piecewise polynomial function such that

$$\mathbf{b}(m) \, \mathrm{d} v = \sum_{\lambda \in P} m(\lambda) \, \delta_{\lambda} * B_{c}(\Phi).$$

Recall that the list Φ is called unimodular if any basis of V contained in Φ is a basis of the lattice Λ .

Theorem 2.1. (See [2].) Let $m \in C(P)$ and let $v \in P$. If Φ is unimodular, then, for any ϵ generic, we have

$$m(v) = \lim_{\epsilon} (\hat{A}(\Phi)\mathbf{b}(m))(v).$$

However, we need to consider the general case, where Φ is not necessarily unimodular. We consider Λ as the group of characters of a torus T, and use the notation s^{λ} for the value of $\lambda \in \Lambda$ at $s \in T$. Let $\mathcal{V}(\Phi)$ be the set of $s \in T$ such that the list $\Phi_s = [\alpha, s^{\alpha} = 1]$ generates V (it is called the vertex set).

Consider a vertex $s \in \mathcal{V}(\Phi)$ and the convolution product

$$B_c(s,\Phi) = \left(\prod_{\alpha \in \Phi \setminus \Phi_s} \frac{\delta_{\alpha/2} - s^{-\alpha}\delta_{-\alpha/2}}{1 - s^{-\alpha}}\right) * B_c(\Phi_s). \tag{1}$$

If $m \in \mathcal{C}(P)$, Theorem 2.2 below (basically due to Dahmen–Micchelli) implies that we can recover the value of m at a point $v \in P$ from the knowledge, in a neighborhood of v, of the locally polynomial measures (for all $s \in \mathcal{V}(\Phi)$)

$$\mathbf{b}(s, m, \kappa) \, \mathrm{d}v = \left(\sum_{v \in P} s^{v - \kappa} m(v) \delta_v \right) * B_c(s, \Phi). \tag{2}$$

Define the series of differential operators

$$E(s,\Phi) = \prod_{\alpha \in \Phi \setminus \Phi_s} \frac{1 - s^{-\alpha}}{e^{\partial_{-\alpha/2}} - s^{-\alpha}e^{\partial_{\alpha/2}}} = 1 + \frac{1}{2} \sum_{\alpha \in \Phi \setminus \Phi_s} \frac{1 + s^{-\alpha}}{1 - s^{-\alpha}} \partial_{\alpha} + \cdots$$

and

$$\hat{A}(s, \Phi) = E(s, \Phi)\hat{A}(\Phi_s).$$

Theorem 2.2. (See [3].) Let $m \in C(P)$ and let $v \in P$. Then, for any ϵ generic, we have

$$m(v) = \sum_{s \in \mathcal{V}(\Phi)} s^{\kappa - v} \lim_{\epsilon} (\hat{A}(s, \Phi) \mathbf{b}(s, m, \kappa))(v).$$

3. Kirillov's formula

Let G be a connected reductive real Lie group with Lie algebra \mathfrak{g} . The function

$$j_{\mathfrak{g}}(X) = \det_{\mathfrak{g}} \left(\frac{e^{ad X/2} - e^{-ad X/2}}{ad X} \right)$$

admits a square root $j_{\mathfrak{g}}^{1/2}(X)$, an analytic function on \mathfrak{g} with $j_{\mathfrak{g}}^{1/2}(0)=1$. Let s be a semi-simple element of G, and $\mathfrak{g}(s)$ its centralizer. The function $\det_{\mathfrak{g}/\mathfrak{g}(s)}(\frac{1-se^{adX}}{1-s})$ admits a square root $D^{1/2}(s,X)$, an analytic function on $\mathfrak{g}(s)$ with $D^{1/2}(s,0)=1$. Let H be a compact connected group, with Lie algebra \mathfrak{h} . Let H be a Cartan subgroup of H with Lie algebra H. We will apply the results of the previous paragraph to the vector space $V=\mathfrak{t}^*$ equipped with the lattice $A \subset \mathfrak{t}^*$ of weights of H (thus $e^{i\lambda}$ is a character of H). Let H0 be the Weyl group of H1. Choose a positive system H2 for the non-zero weights of the adjoint action of H3 in H4. For H5 for H6 for the non-zero

$$j_{\mathfrak{h}}^{1/2}(X) = \prod_{\alpha \in \Lambda^+} \frac{e^{i\langle \alpha, X \rangle/2} - e^{-i\langle \alpha, X \rangle/2}}{i\langle \alpha, X \rangle}.$$

For κ , we will use $\rho_H = \rho_{\Delta^+}$. Let \mathfrak{t}_+^* be the open Weyl chamber. Thus \mathfrak{t}_+^* intersect every orbit of H in \mathfrak{h}^* of maximal dimension in one point. Consider the set $P_{\mathfrak{h}} = (\rho_H + \Lambda) \subset \mathfrak{t}^*$ and $P_{\mathfrak{h}}^+ = (\rho_H + \Lambda) \cap \mathfrak{t}_+^*$. A function *mult* on $P_{\mathfrak{h}}^+$ will be extended to a W-anti-invariant function m on $P_{\mathfrak{h}}$.

The set $P_{\mathfrak{h}}^+$ is in one-to-one correspondence $\mu \mapsto \Pi^H(\mu)$ with the dual \hat{H} of H. The identity

$$\operatorname{Tr} \Pi^{H}(\mu)(\exp X) = \sum_{w \in W} \frac{\epsilon(w)e^{\langle iw\mu, X \rangle}}{\prod_{\alpha \in \Delta^{+}} e^{i\langle \alpha, X \rangle/2} - e^{-i\langle \alpha, X \rangle/2}}$$

holds on \mathfrak{t} . This is the Atiyah–Bott fixed-point formula for the index of a twisted Dirac operator on $H\mu$, so that $\Pi^H(\mu)$ is the quantization $Q(H\mu)$ of the symplectic manifold $H\mu$.

Let $p:M\to \mathfrak{h}^*$ be the moment map of a connected H-Hamiltonian manifold M. Let β_M be the Liouville measure. The slice S of M is the locally closed subset $p^{-1}(\mathfrak{t}_+^*)$ of M. It is a symplectic submanifold of M with associated Liouville measure β_S . If p is proper, the restriction p^0 of p to S defines a proper map $S\to\mathfrak{t}_+^*$. We extend the push-forward measure $p_*^0(\beta_S)$ on \mathfrak{t}_+^* to a W-anti-invariant signed measure on \mathfrak{t}^* denoted by DH(M,p) (the Duistermaat–Heckman measure). If S is non-empty (that is, if p(M) contains an H-orbit of maximal dimension), the support of DH(M,p) is equal to $p(M)\cap\mathfrak{t}^*$. Suppose moreover that there exist regular values $v\in\mathfrak{t}_+^*$ of p^0 . At such v, the reduced space $M_v=p^{-1}(v)/H(v)$ is an orbifold with symplectic form denoted by Ω_v , and corresponding Liouville measure β_{M_v} . By [6], the measure DH(M,p) has a polynomial density with respect to dv in a neighborhood of v, and the value at v is the symplectic volume $\int_{M_v} e^{\Omega_v/2\pi} = \int_{M_v} \beta_{M_v}$.

Some unitary irreducible representations of G can similarly be associated to closed admissible orbits of maximal dimension of the coadjoint representation of G. Recall Harish-Chandra parametrization. To simplify, we assume G linear. Let $f_0 \in \mathfrak{g}^*$ such that $\mathfrak{g}(f_0)$ (its centralizer in \mathfrak{g}) is a Cartan subalgebra of \mathfrak{g} . Denote by $\widetilde{G}(f_0)$ the metaplectic two fold cover of the stabilizer $G(f_0)$ of f_0 . Let τ be a character of $\widetilde{G}(f_0)$ such that $\tau(\exp X) = e^{i\langle f, X \rangle}$ and $\tau(\epsilon) = -1$ if $\epsilon \in \widetilde{G}(f_0)$ projects on 1 and $\epsilon \neq 1$ (if such a character τ exists, f_0 is called admissible). As explained in [4], it follows from deep work of many mathematicians, especially Harish-Chandra, that to this data is associated an irreducible unitary representation $\Pi^G(f_0, \tau)$ of G. We consider it as a quantization $Q(M, \tau)$ of G. If G is admissible and $G(f_0)$ is connected (as is the case when $G(f_0)$ is compact), the character τ is unique, and we simply write Q(M) for $Q(M, \tau)$.

Irreducible unitary representations of G have a character, which, by Harish-Chandra theory, is a locally L^1 function on G. We denote by $\Theta(M, \tau)$ the character of $Q(M, \tau)$. Similarly, the measure β_M , considered as a tempered measure on \mathfrak{g}^* , has a Fourier transform which is a locally L^1 function on \mathfrak{g} . Kirillov's formula (proven in this case by Rossmann [10]) is the equality of locally L^1 functions on \mathfrak{g} :

$$j_{\mathfrak{g}}^{1/2}(X) \Theta(M, \tau)(\exp X) = \int_{M} e^{i\langle f, X \rangle} d\beta_{M}(f).$$

We suppose that the connected compact group H is a subgroup of G, and we assume that the projection map $p: M \to \mathfrak{h}^*$ is proper. It implies that the restriction

$$Q(M,\tau)|_{H} = \sum_{\mu \in P_{h}^{+}} mult(\mu)\Pi^{H}(\mu)$$

is a sum of irreducible representations of H with finite multiplicities $mult(\mu)$. We associated to $mult(\mu)$ an anti-invariant function $m(\mu)$ on $P_{\mathfrak{h}}$, and to the projection p an anti-invariant measure DH(M,p) on \mathfrak{t}^* . Let $\Delta(\mathfrak{g}/\mathfrak{h}) \subset \mathfrak{t}^*$ be the list of weights for the action of T in $\mathfrak{g}_{\mathbb{C}}/\mathfrak{h}_{\mathbb{C}}$. Choose a sublist Φ so that $\Delta(\mathfrak{g}/\mathfrak{h})$ is the disjoint union of Φ , $-\Phi$ and the zero weights. The subsequent definitions do not depend of this choice. On \mathfrak{t} , we have

$$j_{\mathfrak{g}}^{1/2}(X) = j_{\mathfrak{h}}^{1/2}(X) \prod_{\alpha \in \Phi} \frac{e^{i\langle \alpha, X \rangle/2} - e^{-i\langle \alpha, X \rangle/2}}{i\langle \alpha, X \rangle}.$$

We assume (and we can easily restrict to this case) that \mathfrak{h} does not contain any ideal of \mathfrak{g} . Then the set Φ generates \mathfrak{t}^* . Kirillov's formula, written for the characters of $Q(M, \tau)$ and $Q(H\mu)$, implies the equality of measures on \mathfrak{t}^* :

$$\left(\sum_{\nu\in P_{\mathfrak{h}}} m(\nu)\delta_{\nu}\right) * B_{\mathfrak{c}}(\Phi) = DH(M, p).$$

We write $DH(M, p) = \mathbf{d} \, dv$, where \mathbf{d} is piecewise polynomial. When $v \in \mathfrak{t}^*$ is regular, we have $r(v) = (\hat{A}(\Phi)\mathbf{d})(v) = \int_{M_v} e^{\Omega_v/2\pi} \, \hat{A}(M_v)$ where $\hat{A}(M_v)$ is the \hat{A} -genus of M_v . This follows from expressing the linear variation of Ω_v in function of the curvature of the principal bundle $(p^0)^{-1}(v)/T$ [6].

In the (rare) case where the system Φ is unimodular (for example for G the adjoint group of U(p,q), and H the maximal compact subgroup), the orbifold M_{ν} is smooth. The value $r(\nu)$ can be defined at any $\nu \in P_{\mathfrak{h}}$, by taking a limit of $r(\nu + t\epsilon)$ for any ϵ generic, and coincide with the number $Q(M_{\nu}) \in \mathbb{Z}$ defined as the quantization of the (possibly singular) reduction M_{ν} [8]. Thus we obtain

$$Q(M)|_{H} = \sum_{\nu \in P_{h}^{+} \cap p(M)} Q(M_{\nu})Q(H\nu).$$

We now consider the general case. Consider a vertex $s \in T$ for Φ . Let M(s) be the submanifold of M fixed by s. It may have several connected components. It is a symplectic submanifold, and we denote by β_s its Liouville measure. We can define the generalized function $\Theta(f,\tau)(sg)$ where $g \in G$ commutes with s. The identity

$$j_{\mathfrak{g}(s)}^{1/2}(X)D^{1/2}(s,X)\Theta(f,\tau)(s\exp X) = \int\limits_{M(s)} \epsilon(s,\tau)e^{i\langle f,X\rangle}\beta_s \tag{3}$$

holds as an identity of locally L^1 -functions on $\mathfrak{g}(s)$ [1]. Here $\epsilon(s,\tau)$ is a locally constant function on M(s) (defined in [5]). Recall (1) the measure $B_c(s,\Phi)$ on \mathfrak{t}^* associated to s. Denote by $p_s:M(s)\to \mathfrak{h}(s)^*$ the restriction of p to M(s). We define $DH(M,s,\tau)$ as the sum of the measures $\epsilon(s,\tau)_iDH(M_s^i,p_s^i)$, where M_s^i are the connected components of M_s , and $\epsilon(s,\tau)_i$ the constant value of $\epsilon(s,\tau)$ on M_s^i . The support of $DH(M,s,\tau)$ is contained in the image p(M) of M for any s. Formula (3) implies the identity of measures on \mathfrak{t}^* :

$$\left(\sum_{\nu \in P_h} s^{\nu - \rho_H} m(\nu) \delta_{\nu}\right) * B_c(s, \Phi) = DH(M, s, \tau).$$

Comparing with Formula (2), we see that we can compute $m(\nu)$ from the knowledge, in a neighborhood of ν , of Duistermaat–Heckman measures $DH(M, s, \tau)$ associated to all vertices s. In particular $m(\nu) = 0$, if ν is not in the interior $p(M)^0$ of p(M).

More precisely, Theorem 2.2 and the definition of the quantization of (possibly singular) reduced spaces gives us

$$Q(M,\tau)|_{H} = \sum_{\nu \in P_{\mathfrak{h}}^{+} \cap p(M)^{0}} Q(M_{\nu},\tau)Q(H\nu).$$

References

- [1] A. Bouaziz, Sur les caractères des groupes de Lie réductifs non connexes, Journal of Functional Analysis 70 (1987) 1-79.
- [2] C. Dahmen, C. Micchelli, On the solution of certain systems of partial difference equations and linear dependence of translate of box splines, Trans. Amer. Math. Soc. 292 (1985) 305–320.
- [3] C. De Concini, C. Procesi, M. Vergne, Box splines and the equivariant index theorem, arXiv:1012.1049.
- [4] M. Duflo, Construction de représentations unitaires d'un groupe de Lie, in: CIME, Cortona, 1980. Available in Springer's series C.I.M.E. Summer Schools, vol. 82, 2011, pp. 130–220.
- [5] M. Duflo, G.J. Heckman, M. Vergne, Projections d'orbites, formule de Kirillov et formule de Blattner, Mém. Soc. Math. France 15 (1984) 65-128.
- [6] J.J. Duistermaat, G.J. Heckman, On the variation in the cohomology of the symplectic form on the reduced phase space, Invent. Math. 69 (1982) 259–268.
- [7] E. Meinrenken, R. Sjamaar, Singular reduction and quantization, Topology 38 (1999) 699-763.
- [8] P.E. Paradan, Spin_c-quantization and the K-multiplicities of the discrete series, Ann. Sci. Ecole Norm. Sup. 36 (2003) 805-845.
- [9] P.E. Paradan, Spin-quantization commutes with reduction, arXiv:0911.1067. Journal of Symplectic Geometry, in press.
- [10] W. Rossmann, Kirillov's character formula for reductive Lie groups, Invent. Math. 48 (1978) 207–220.